[1]段伟,蔡国军,刘松玉.基于CPTU与剪切波速测试的宁波海相黏土强度特性评价[J].哈尔滨工程大学学报,2018,39(12):1918-1925.[doi:10.11990/jheu.201706004]
 DUAN Wei,CAI Guojun,LIU Songyu.Evaluation of strength characteristics of Ningbo marine clay based on CPTU and shear wave velocity tests[J].hebgcdxxb,2018,39(12):1918-1925.[doi:10.11990/jheu.201706004]
点击复制

基于CPTU与剪切波速测试的宁波海相黏土强度特性评价(/HTML)
分享到:

《哈尔滨工程大学学报》[ISSN:1006-6977/CN:61-1281/TN]

卷:
39
期数:
2018年12期
页码:
1918-1925
栏目:
出版日期:
2018-12-05

文章信息/Info

Title:
Evaluation of strength characteristics of Ningbo marine clay based on CPTU and shear wave velocity tests
作者:
段伟12 蔡国军12 刘松玉12
1. 东南大学 岩土工程研究所, 江苏 南京 211189;
2. 江苏省城市地下工程与环境安全重点实验室, 江苏 南京 211189
Author(s):
DUAN Wei12 CAI Guojun12 LIU Songyu12
1. Institute of Geotechnical Engineering, Southeast University, Nanjing 211189, China;
2. Jiangsu Key Laboratory of Urban Underground Engineering & Environmental Safety, Nanjing 211189, China
关键词:
黏土最大剪切模量不排水抗剪强度孔压静力触探剪切波速锥尖阻力孔压参数
分类号:
TU413
DOI:
10.11990/jheu.201706004
文献标志码:
A
摘要:
针对宁波海相黏土,在相同孔位分别进行了孔压静力触探原位测试和现场波速测试。研究了CPTU测试参数与剪切波速、最大剪切模量的关系以及剪切波速与不排水抗剪强度的关系。并且论证了联合CPTU和剪切波速测试数据来表征黏土强度特性的可行性。试验结果表明:最大剪切模量、剪切波速与CPTU测试参数存在良好的相关关系,可通过锥尖阻力和孔压参数来近似估计剪切波速、最大剪切模量值;不排水抗剪强度与剪切波速的相关关系良好,通过不排水抗剪强度与剪切波速的关系式可将刚度与强度联系起来,该关系式可作为一种新方法来估计黏性土不排水抗剪强度。试验结果可为宁波地区地下结构的设计计算提供一定的参考价值。

参考文献/References:

[1] 刘松玉, 蔡正银. 土工测试技术发展综述[J]. 土木工程学报, 2012, 45(3):151-165.LIU Songyu, CAI Zhengyin. Review of the geotechnical testing[J]. China civil engineering journal, 2012, 45(3):151-165.
[2] CAI Guojun, LIU Songyu, PUPPALA A J. Assessment of soft clay ground improvement from SCPTU results[J]. Proceedings of the institution of civil engineers-geotechnical engineering, 2012, 165(2):83-95.
[3] CAI Guojun, LIU Songyu, TONG Liyuan. Field evaluation of deformation characteristics of a lacustrine clay deposit using seismic piezocone tests[J]. Engineering geology, 2010, 116(3/4):251-260.
[4] LONG M, DONOHUE S. In situ shear wave velocity from multichannel analysis of surface waves (MASW) tests at eight Norwegian research sites[J]. Canadian geotechnical journal, 2007, 44(5):533-544.
[5] 蔡国军, 刘松玉, 童立元, 等. 基于SCPTU的软土最大剪切模量测试分析研究[J]. 岩土力学, 2008, 29(9):2556-2560.CAI Guojun, LIU Songyu, TONG Liyuan, et al. Evaluation of maximum shear modulus of soft clay from seismic piezocone tests (SCPTU)[J]. Rock and soil mechanics, 2008, 29(9):2556-2560.
[6] 张先伟, 孔令伟, 郭爱国, 等. 强结构性对湛江黏土地区CPTU原位测定结果的影响[J]. 工程力学, 2013, 30(2):118-124.ZHANG Xianwei, KONG Lingwei, GUO Aiguo, et al. Effect of strong structure on CPTU test results of Zhanjiang clay area[J]. Engineering mechanics, 2013, 30(2):118-124.
[7] LONG M, DONOHUE S D. Characterization of Norwegian marine clays with combined shear wave velocity and piezocone cone penetration test (CPTU) data[J]. Canadian geotechnical journal, 2010, 47(7):709-718.
[8] 梅新忠, 王振德, 王晨光. 工程勘察中悬挂式波速测井方法的应用[J]. 工程勘察, 2006(增刊1):22-25.MEI Xinzhong, WANG Zhende, WANG Chenguang. Application of suspended wave velocity logging method in engineering investigation[J]. Geotechnical investigation & surveying, 2006(suppl.1):22-25.
[9] JAIME A, ROMO M P. The Mexico earthquake of september 19, 1985-correlations between dynamic and static properties of Mexico City clay[J]. Earthquake spectra, 1988, 4(4):787-804.
[10] ROBERTSON P K, WOELLER D J, KOKAN M, et al. Seismic techniques to evaluate liquefaction potential[C]//Proceedings of the 45th Canadian Geotechnical Conference. Toronto, 1992:26-28.
[11] FEAR C E, ROBERTSON P K. Estimating the undrained strength of sand:a theoretical framework[J]. Canadian geotechnical journal, 1995, 32(5):859-870.
[12] KARRAY M, LEFEBVRE G, ETHIER Y, et al. Influence of particle size on the correlation between shear wave velocity and cone tip resistance[J]. Canadian geotechnical journal, 2011, 48(4):599-615.
[13] MAYNE P W, RIX G J. Correlations between shear wave velocity and cone tip resistance in natural clays[J]. Soils and foundations, 1995, 35(2):107-110.
[14] HEGAZY Y A, MAYNE P W. Statistical correlation between Vs and cone penetration data for different soil types[C]//Proceedings of the International Symposium on Penetration Testing, CPT’95. Linkoeping, 1995:173-178.
[15] PIRATHEEPAN P. Estimating shear-wave velocity from SPT and CPT data[D]. Clemson:Clemson University, 2002.
[16] TABOADA V M, ESPINOSA E, CARRASCO D, et al. Predictive equations of shear wave velocity for Bay of Campeche clay[C]//Offshore Technology Conference. Houston, 2013.
[17] CAI Guojun, PUPPALA A J, LIU Songyu. Characterization on the correlation between shear wave velocity and piezocone tip resistance of Jiangsu clays[J]. Engineering geology, 2014, 171:96-103.
[18] BOUCKOVALAS G, KALTEZIOTIS N, SABATAKAKIS N, et al. Shear wave velocity in a very soft clay-measurements and correlations[C]//Proceedings of the 12th International Conference Soil Mechanics Foundation Engineering. Brazil, 1989:191-194.
[19] RIX G J, STOKOE K H. Correlation of initial tangent modulus and cone resistance[C]//Proceedings International Symposium on Calibration Chamber Testing. Postdam, 1991:351-361.
[20] MAYNE P W, RIX G J. Gmax-qc relationships for clays[J]. Geotechnical testing journal, 1993, 16(1):54-60.
[21] LEROUEIL S, HIGHT D W. Behaviour and properties of natural soils and soft rocks[J]. Characterisation and engineering properties of natural soils, 2003, 1:29-254.
[22] SIMONINI P, COLA S. Use of piezocone to predict maximum stiffness of Venetian soils[J]. Journal of geotechnical and geoenvironmental engineering, 2000, 126(4):378-382.
[23] ANAGNOSTOPOULOS A, KOUKIS G, SABATAKAKIS N, et al. Empirical correlations of soil parameters based on Cone Penetration Tests (CPT) for Greek soils[J]. Geotechnical & geological engineering, 2003, 21(4):377-387.
[24] L’HEUREUX J S, LONG M. Relationship between shear-wave velocity and geotechnical parameters for Norwegian clays[J]. Journal of geotechnical and geoenvironmental engineering, 2017, 143(6):04017013.
[25] DICKENSON S E. Dynamic response of soft and deep cohesive soils during the Loma Prieta earthquake of October 17, 1989[D]. Berkeley:University of California, 1994.
[26] BLAKE W D, GILBERT R B. Investigation of possible relationship between undrained shear strength and shear wave velocity for normally consolidated clays[C]//Offshore Technology Conference. Houston, 1997.
[27] ASHFORD S A, JAKRAPIYANUN W, LUKKUNAPRASIT P. Amplification of earthquake ground motions in Bangkok[C]//Proceedings of the 12th World Conference on Earthquake Engineering. Auckland, New Zealand, 2000.
[28] LIKITLERSUANG S, KYAW K. A study of shear wave velocity correlations of Bangkok subsoil[J]. Obras Y Proyectos, 2010, 7:27-33.
[29] YUN T S, NARSILIO G A, SANTAMARINA J C. Physical characterization of core samples recovered from Gulf of Mexico[J]. Marine and petroleum geology, 2006, 23(9/10):893-900.
[30] KULKARNI M P, PATEL A, SINGH D N. Application of shear wave velocity for characterizing clays from coastal regions[J]. KSCE journal of civil engineering, 2010, 14(3):307-321.
[31] AGAIBY S S, MAYNE P W. Relationship between undrained shear strength and shear wave velocity for clays[C]//6th Symp. on Deformation Characteristics of Geomaterials. Argentina, 2015:358-365.

备注/Memo

备注/Memo:
收稿日期:2017-6-1。
基金项目:国家重点研发计划课题(2016YFC0800200);国家自然科学基金项目(41672294);中央高校基本科研业务费专项资金资助、江苏省研究生科研与实践创新计划项目(KYCX17_0139).
作者简介:段伟(1989-),男,博士研究生;蔡国军(1977-),男,教授,博士生导师.
通讯作者:蔡国军,E-mail:focuscai@163.com.
更新日期/Last Update: 2018-12-01