[1]徐万海,马烨璇,张书海,等.圆柱顺流向涡激振动响应及流体力特征分析[J].哈尔滨工程大学学报,2018,39(12):1902-1909.[doi:10.11990/jheu.201706020]
 XU Wanhai,MA Yexuan,ZHANG Shuhai,et al.Analysis on response and fluid force characteristics of a cylinder subjected to vortex-induced vibration in flow direction[J].hebgcdxxb,2018,39(12):1902-1909.[doi:10.11990/jheu.201706020]
点击复制

圆柱顺流向涡激振动响应及流体力特征分析(/HTML)
分享到:

《哈尔滨工程大学学报》[ISSN:1006-6977/CN:61-1281/TN]

卷:
39
期数:
2018年12期
页码:
1902-1909
栏目:
出版日期:
2018-12-05

文章信息/Info

Title:
Analysis on response and fluid force characteristics of a cylinder subjected to vortex-induced vibration in flow direction
作者:
徐万海1 马烨璇1 张书海1 刘彬2
1. 天津大学 水利工程仿真与安全国家重点实验室, 天津 300072;
2. 中国电力科学研究院, 北京 100055
Author(s):
XU Wanhai1 MA Yexuan1 ZHANG Shuhai1 LIU Bin2
1. State Key Laboratory of Hydraulic Engineering Simulation and Safety, Tianjin 300072, China;
2. China Electric Power Research Institute, Beijing 100055, China
关键词:
柔性圆柱涡激振动顺流向流体力合力系数脉动阻力系数附加质量系数流固耦合
分类号:
TV312
DOI:
10.11990/jheu.201706020
文献标志码:
A
摘要:
为了研究柔性圆柱顺流向涡激振动响应特性和流固耦合机理,进行了柔性圆柱涡激振动实验。根据实验中测量的结构应变,用模态分析法重构圆柱顺流向响应位移。建立有限元模型,根据位移逆向求解圆柱顺流向的流体力,并通过最小二乘法获得了脉动阻力和附加质量系数。结果表明:顺流向响应位移均方根最高可达0.45倍的圆柱直径;在模态控制区,随响应位移的增大,脉动阻力系数减小,体现了顺流向涡激振动的自限制特性;附加质量系数在模态控制区减小,致使结构响应频率“锁定”在固有频率附近;脉动阻力系数和响应位移的轴向分布具有高度一致性;流体力和响应位移之间的相位差会对脉动阻力和附加质量系数产生重要影响。

参考文献/References:

[1] SARPKAYA T. A critical review of the intrinsic nature of vortex-induced vibrations[J]. Journal of fluids and structures, 2004, 19(4):389-447.
[2] WILLIAMSON C H K, GOVARDHAN R. A brief review of recent results in vortex-induced vibrations[J]. Journal of wind engineering and industrial aerodynamics, 2008, 96(6/7):713-735.
[3] 徐万海, 马烨璇, 罗浩, 等. 小倾角倾斜柔性圆柱涡激振动实验研究[J]. 哈尔滨工程大学学报, 2017, 38(2):195-200.XU Wanhai, MA Yexuan, LUO Hao, et al. Vortex-induced vibration of an inclined flexible cylinder with a small yaw angle[J]. Journal of Harbin Engineering University, 2017, 38(2):195-200.
[4] 及春宁, 邢国源, 张力, 等. 倾斜流作用下柔性立管涡激振动的数值模拟[J]. 哈尔滨工程大学学报, 2018, 39(2):324-331.JI Chunning, XING Guoyuan, ZHANG Li, et al. Numerical simulations of vortex-induced vibration of flexible riser subjected to inclined flow[J]. Journal of Harbin Engineering University, 2018, 39(2):324-331.
[5] KHALAK A, WILLIAMSON C H K. Motions, forces and mode transitions in vortex-induced vibrations at low mass-damping[J]. Journal of fluids and structures, 1999, 13(7/8):813-851.
[6] JAUVTIS N, WILLIAMSON C H K. Vortex-induced vibration of a cylinder with two degrees of freedom[J]. Journal of fluids and structures, 2003, 17(7):1035-1042.
[7] 谷家扬, 杨琛, 朱新耀, 等. 质量比对圆柱涡激特性的影响研究[J]. 振动与冲击, 2016, 35(4):134-140.GU Jiayang, YANG Chen, ZHU Xinyao, et al. Influences of mass ratio on vortex induced vibration characteristics of a circular cylinder[J]. Journal of vibration and shock, 2016, 35(4):134-140.
[8] HUERA-HUARTE F J, BANGASH Z A, GONZALEZ L M. Towing tank experiments on the vortex-induced vibrations of low mass ratio long flexible cylinders[J]. Journal of fluids and structures, 2014, 48:81-92.
[9] 徐万海, 谢武德, 彭碧瑶, 等. 考虑管土作用悬跨管道纯顺流向涡激振动研究[J]. 哈尔滨工程大学学报, 2016, 37(9):1184-1189.XU Wanhai, XIE Wude, PENG Biyao, et al. Study on pure in-line vortex-induced vibrations of free-spanning pipeline considering pipe-soil interaction at shoulders[J]. Journal of Harbin Engineering University, 2016, 37(9):1184-1189.
[10] CHAPLIN J R, BEARMAN P W, HUARTE F J H, et al. Laboratory measurements of vortex-induced vibrations of a vertical tension riser in a stepped current[J]. Journal of fluids and structures, 2005, 21(1):3-24.
[11] TRIM A D, BRAATEN H, LIE H, et al. Experimental investigation of vortex-induced vibration of long marine risers[J]. Journal of fluids and structures, 2005, 21(3):335-361.
[12] CHAPLIN J R, BEARMAN P W, CHENG Y, et al. Blind predictions of laboratory measurements of vortex-induced vibrations of a tension riser[J]. Journal of fluids and structures, 2005, 21(1):25-40.
[13] ARONSEN K H. An experimental investigation of in-line and combined in-line and cross-flow vortex induced vibrations[D]. Trondheim:Norwegian University of Science and Technology, 2007:39-114.
[14] YIN Decao, LARSEN C M. On determination of VIV coefficients under shear flow condition[C]//Proceedings of the ASME 2010 29th International Conference on Ocean, Offshore and Arctic Engineering. Shanghai, 2010:547-556.
[15] SANAATI B, KATO N. Vortex-induced vibration (VIV) dynamics of a tensioned flexible cylinder subjected to uniform cross-flow[J]. Journal of marine science and technology, 2013, 18(2):247-261.
[16] 唐国强. 立管涡激振动数值模拟方法及物理模型实验[D]. 大连:大连理工大学, 2011:125-141.TANG Guoqiang. A study on numerical and experimetal investigation into vortex-induced vibration of marine risers[D]. Dalian:Dalian University of Technology, 2011:125-141.
[17] SONG Leijian, FU Shixiao, CAO Jing, et al. An investigation into the hydrodynamics of a flexible riser undergoing vortex-induced vibration[J]. Journal of fluids and structures, 2016, 63:325-350.
[18] LIE H, KAASEN K E. Modal analysis of measurements from a large-scale VIV model test of a riser in linearly sheared flow[J]. Journal of fluids and structures, 2006, 22(4):557-575.

相似文献/References:

[1]辛大波,张明晶,王亮,等.大跨度桥梁主梁风雨致涡激振动试验研究[J].哈尔滨工程大学学报,2011,(09):1168.[doi:doi:10.3969/j.issn.1006-7043.2011.09.013]
 XIN Dabo,ZHANG Mingjing,WANG Liang,et al.Experimental study on wind-rain-induced and vortex-induced vibration in bridge deck sections of long-span bridges[J].hebgcdxxb,2011,(12):1168.[doi:doi:10.3969/j.issn.1006-7043.2011.09.013]
[2]赵恩金,拾兵,曹坤.导流板对海底管线涡激振动的影响[J].哈尔滨工程大学学报,2016,37(03):320.[doi:10.11990/jheu.201411081]
 ZHAO Enjin,SHI Bing,CAO Kun.Influence of reflectors on vortex-induced vibration of subsea pipelines[J].hebgcdxxb,2016,37(12):320.[doi:10.11990/jheu.201411081]
[3]徐万海,谢武德,彭碧瑶,等.考虑管土作用悬跨管道纯顺流向涡激振动研究[J].哈尔滨工程大学学报,2016,37(09):1184.[doi:10.11990/jheu.201507052]
 XU Wanhai,XIE Wude,PENG Biyao,et al.Study on pure in-line vortex-induced vibrations of free-spanning pipeline considering pipe-soil interaction at shoulders[J].hebgcdxxb,2016,37(12):1184.[doi:10.11990/jheu.201507052]
[4]徐万海,马烨璇,罗浩,等.小倾角倾斜柔性圆柱涡激振动实验研究[J].哈尔滨工程大学学报,2017,38(02):195.[doi:10.11990/jheu.201511035]
 XU Wanhai,MA Yexuan,LUO Hao,et al.Vortex-induced vibration of an inclined flexible cylinder with a small yaw angle[J].hebgcdxxb,2017,38(12):195.[doi:10.11990/jheu.201511035]
[5]唐友刚,青兆熹,张杰,等.深海立管涡激振动预报模型及影响因素[J].哈尔滨工程大学学报,2017,38(03):338.[doi:10.11990/jheu.201603096]
 TANG Yougang,QING Zhaoxi,ZHANG Jie,et al.Prediction model and influence factors on vortex-induced vibration of deepwater risers[J].hebgcdxxb,2017,38(12):338.[doi:10.11990/jheu.201603096]
[6]陈东阳,Laith K. Abbas,王国平,等.流场环境对柔性立管湿模态的影响[J].哈尔滨工程大学学报,2017,38(10):1587.[doi:10.11990/jheu.201605083]
 CHEN Dongyang,LAITH K. Abbas,WANG Guoping,et al.Influence of flow field environment on wet modal vibration of flexible riser[J].hebgcdxxb,2017,38(12):1587.[doi:10.11990/jheu.201605083]
[7]张大可,赵西增,胡子俊,等.低雷诺数下串列双圆柱涡激振动的数值模拟[J].哈尔滨工程大学学报,2018,39(02):247.[doi:10.11990/jheu.201610018]
 ZHANG Dake,ZHAO Xizeng,HU Zijun,et al.Numerical study of flow-induced vibration of tandem circular cylinders at low Reynolds number[J].hebgcdxxb,2018,39(12):247.[doi:10.11990/jheu.201610018]
[8]及春宁,邢国源,张力,等.倾斜流作用下柔性立管涡激振动的数值模拟[J].哈尔滨工程大学学报,2018,39(02):324.[doi:10.11990/jheu.201609002]
 JI Chunning,XING Guoyuan,ZHANG Li,et al.Numerical simulations of vortex-induced vibration of flexible riser subjected to inclined flow[J].hebgcdxxb,2018,39(12):324.[doi:10.11990/jheu.201609002]
[9]康庄,张橙,张立健,等.基于改进湍流模型的圆柱涡激振动数值模拟研究[J].哈尔滨工程大学学报,2018,39(05):837.[doi:10.11990/jheu.201702023]
 KANG Zhuang,ZHANG Cheng,ZHANG Lijian,et al.Numerical simulation of vortex-induced vibration of cylinder based on improved turbulence model[J].hebgcdxxb,2018,39(12):837.[doi:10.11990/jheu.201702023]
[10]马哲,徐海炜,程勇,等.双自由度变截面圆柱涡激振动数值模拟[J].哈尔滨工程大学学报,2018,39(07):1150.[doi:10.11990/jheu.201701002]
 MA Zhe,XU Haiwei,CHENG Yong,et al.Two-degree-of-freedom vortex induced vibration of a non-uniform cylinder[J].hebgcdxxb,2018,39(12):1150.[doi:10.11990/jheu.201701002]

备注/Memo

备注/Memo:
收稿日期:2017-6-7。
基金项目:国家自然科学基金项目(51479135,51679167,51678545).
作者简介:徐万海(1981-),男,副教授;刘彬(1978-),男,博士.
通讯作者:刘彬,E-mail:liubinliubin@yeah.net.
更新日期/Last Update: 2018-12-01