[1]徐嘉启,熊鹰,王展智,等.HCRSP推进器操舵工况空泡性能数值模拟[J].哈尔滨工程大学学报,2018,39(12):1873-1879.[doi:10.11990/jheu.201706021]
 XU Jiaqi,XIONG Ying,WANG Zhanzhi,et al.Numerical simulation of cavitation performance of HCRSP in steering conditions[J].hebgcdxxb,2018,39(12):1873-1879.[doi:10.11990/jheu.201706021]
点击复制

HCRSP推进器操舵工况空泡性能数值模拟(/HTML)
分享到:

《哈尔滨工程大学学报》[ISSN:1006-6977/CN:61-1281/TN]

卷:
39
期数:
2018年12期
页码:
1873-1879
栏目:
出版日期:
2018-12-05

文章信息/Info

Title:
Numerical simulation of cavitation performance of HCRSP in steering conditions
作者:
徐嘉启 熊鹰 王展智 王睿
海军工程大学 舰船与海洋学院, 湖北 武汉 430033
Author(s):
XU Jiaqi XIONG Ying WANG Zhanzhi WANG Rui
College of Naval Ship and Ocean, Naval University of Engineering, Wuhan 430033, China
关键词:
HCRSP推进器操舵工况空泡数值模拟前桨后桨吊舱网格
分类号:
U661.1
DOI:
10.11990/jheu.201706021
文献标志码:
A
摘要:
为了解HCRSP推进器操舵工况的空泡性能,首先对E779A桨空泡性能进行了数值模拟,验证了算法的有效性,其次对混合式CRP推进器空泡性能进行了数值模拟。发现HCRSP推进器在操舵工况下前桨空泡基本不受后桨、吊舱影响,后桨空泡形态受前桨、吊舱和偏转角影响,空泡面积随周向角脉动变化。网格划分采用结构化重叠网格,提高了吊舱偏转后的网格质量和网格生成效率。本文的研究结果为HCRSP推进器的设计提供了参考。

参考文献/References:

[1] SÁNCHEZ-CAJA A, PÉREZ-SOBRINO M, QUEREDA R, et al. Combination of Pod, CLT and CRP propulsion for improving ship efficiency:the TRIPOD project[C]//Proceedings of the 3rd International Symposium on Marine Propulsorssmp’13. Tasmania, Australia, 2013.
[2] 崔燕. 欧盟STREAMLINE计划[J]. 中国船检, 2013(11):68-69.CUI Yan. EU STREAMLINE project[J]. China ship survey, 2013(11):68-69.
[3] XIONG Ying, ZHANG Ke, WANG Zhanzhi, et al. Numerical and experimental studies on the effect of axial spacing on hydrodynamic performance of the hybrid CRP Pod propulsion system[J]. China ocean engineering, 2016, 30(4):627-636.
[4] 王展智, 熊鹰, 王睿. 主要设计参数对混合式CRP推进器敞水性能的影响[J]. 哈尔滨工程大学学报, 2016, 37(1):98-103.WANG Zhanzhi, XIONG Ying, WANG Rui. Effect of the main design parameters on the open-water performance of a hybrid CRP podded propulsion system[J]. Journal of Harbin Engineering University, 2016, 37(1):98-103.
[5] 盛立, 熊鹰. 混合式CRP吊舱推进器水动力性能数值模拟及试验[J]. 南京航空航天大学学报, 2012, 44(2):184-190.SHENG Li, XIONG Ying. Numerical simulation and experimental investigation on hydrodynamics performance of hybrid CRP podded propulsion[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2012, 44(2):184-190.
[6] 王睿, 熊鹰, 王展智, 等. 混合式CRP空泡性能模型试验研究[J]. 哈尔滨工程大学学报, 2016, 37(12):1625-1630.WANG Rui, XIONG Ying, WANG Zhanzhi, et al. Experimental research on the cavitation performance of a hybrid contra-rotating shaft pod propulsor[J]. Journal of Harbin Engineering University, 2016, 37(12):1625-1630.
[7] 徐嘉启, 熊鹰, 王展智. 混合式CRP推进器操舵工况水动力性能数值研究[J]. 中国舰船研究, 2017, 12(2):63-70, 99.XU Jiaqi, XIONG Ying, WANG Zhanzhi. Numerical research of hydrodynamic performance of hybrid CRP podded propulsor in steering conditions[J]. Chinese journal of ship research, 2017, 12(2):63-70, 99.
[8] WANG Zhanzhi, XIONG Ying. Effect of time step size and turbulence model on the open water hydrodynamic performance prediction of contra-rotating propellers[J]. China ocean engineering, 2013, 27(2):193-204.
[9] BLACK S D, CUSANELLI D S. Design and testing of a hybrid shaft-pod propulsor for a high speed sealift ship[C]//Proceedings of the SNAME Propellers/Shafting 2003 Symposium, Society of Naval Architects and Marine Engineers. Virginia, USA, 2009.
[10] KIM S H, CHOO S H, PARK J Y, et al. Numerical simulation of cavitation phenomena for hybrid contra-rotating shaft propellers[C]//Proceedings of the 9th International Symposium on Cavitation. Lausanne, Switzerland, 2015.
[11] MENTER F R. Two-equation eddy-viscosity turbulence models for engineering applications[J]. AIAA journal, 1994, 32(8):1598-1605.
[11] SAUER J. Instationär kavitierende Strömungen-Ein neues Modell, basierend auf Front Capturing (VoF) und Blasendynamik[D]. Germany:University of Karlsruhe, 2000.
[12] SALVATORE F. The INSEAN E779A propeller experimental dataset[R]. INSEAN, VIRTUEWP4, 2004.
[13] VAZ G, HALLY D, HUUVA T, et al. Cavitating flow calculations for the E779A propeller in open water and behind conditions:code comparison and solution validation[C]//Proceedings of the 4th International Symposium on Marine Propulsors. Austin, Texas, USA, 2015.
[14] PEREIRA F, SALVATORE F, DI FELICE F. Measurement and modeling of propeller cavitation in uniform inflow[J]. Journal of fluids engineering, 2004, 126(4):671-679.
[15] PEREIRA F, SALVATORE F, DI FELICE F, et al. Experimental investigation of a Cavitating propeller in non-uniform inflow[C]//Proceedings of the 25th ONR Symposium on Naval Hydrodynamics. Newfoundland, Canada, 2004.
[16] MITJA M, ENRICO N. Comparison of hexa-structured and hybrid-unstructured meshing approaches for numerical prediction of the flow around marine propellers[C]//Proceedings of the 1st International Symposium on Marine Propulsors. Trondheim, Norway, 2009.
[17] 王展智. 采用混合式CRP推进器的船舶水动力特性及尺度效应研究[D]. 武汉:海军工程大学, 2014.WANG Zhanzhi. Study on the Hydrodynamic characteristic and scale effect of a ship equipped with the hybrid CRP pod propulsion system[D]. Wuhan:Naval University of Engineering, 2014.
[18] 伍贻兆, 田书玲, 夏健. 基于非结构动网格的非定常流数值模拟方法[J]. 航空学报, 2011, 32(1):15-26.WU Yizhao, TIAN Shuling, XIA Jian. Unstructured grid methods for unsteady flow simulation[J]. Acta aeronautica et astronautica sinica, 2011, 32(1):15-26.
[19] 徐嘉启. 操舵工况下混合式CRP推进器水动力性能数值模拟研究[D]. 武汉:海军工程大学, 2016.XU Jiaqi. Numerical study of hydrodynamic performance of hybrid CRP propulsor in steering conditions[D]. Wuhan:Naval University of Engineering, 2016.
[20] 宋晗. 空泡水洞洞壁效应修正及混合式CRP推进器水动力性能试验研究[D]. 武汉:海军工程大学, 2016.SONG Han. Experiment research on the wall effect correction in cavitation tunnel and the hydrodynamic performance of Hybrid Contra Rotating Propeller[D]. Wuhan:Naval University of Engineering, 2016.
[21] CARRICA P M, CASTRO A M, STERN F. Self-propulsion computations using a speed controller and a discretized propeller with dynamic overset grids[J]. Journal of marine science and technology, 2010, 15(4):316-330.

备注/Memo

备注/Memo:
收稿日期:2017-6-8。
基金项目:国家自然科学基金项目(51479207);上海交通大学海洋工程国家重点实验室研究基金项目(1514).
作者简介:徐嘉启(1991-),男,博士研究生;熊鹰(1958-),男,教授,博士生导师;王展智(1986-),男,讲师.
通讯作者:王展智,E-mail:wzz200425@126.com.
更新日期/Last Update: 2018-12-01