[1]但启联.基于无应力状态控制法的钢桁梁桥起拱研究[J].哈尔滨工程大学学报,2018,39(12):1941-1946.[doi:10.11990/jheu.201706034]
 DAN Qilian.Pre-camber setting of truss bridge based unstressed state control method[J].hebgcdxxb,2018,39(12):1941-1946.[doi:10.11990/jheu.201706034]
点击复制

基于无应力状态控制法的钢桁梁桥起拱研究(/HTML)
分享到:

《哈尔滨工程大学学报》[ISSN:1006-6977/CN:61-1281/TN]

卷:
39
期数:
2018年12期
页码:
1941-1946
栏目:
出版日期:
2018-12-05

文章信息/Info

Title:
Pre-camber setting of truss bridge based unstressed state control method
作者:
但启联
西南交通大学 土木工程学院, 四川 成都 610031
Author(s):
DAN Qilian
School of Civil Engineering, Southwest Jiaotong University, Chengdu 610031, China
关键词:
钢桁梁桥预拱度曲线相对预拱度厂制预拱度无应力状态起拱法
分类号:
U448.36
DOI:
10.11990/jheu.201706034
文献标志码:
A
摘要:
为探讨已知预拱度曲线的钢桁梁桥的预拱度设置方法,将节间相对预拱度作为输入变量,由分阶段成形结构力学平衡方程出发,推导得出各单元杆件伸缩量的数学表达式。针对下承式钢桁梁桥预拱度设置特点,进一步得出了只伸缩上弦杆,同时伸缩上弦杆和斜腹杆,同时伸缩上弦杆、竖杆和斜腹杆三种情况下的杆件伸缩公式,并通过实桥算例说明该方法的应用。分析结果表明:无应力状态起拱法为纯几何起拱法,起拱过程不会产生附加内力和起拱支座反力;计算结果与设计值和文献计算值吻合,说明该方法进行预拱度设置是可靠的。本文方法计算结果可靠,值得同类桥型借鉴。

参考文献/References:

[1] 中铁大桥勘测设计院有限公司. TB 10002.2-2005, 铁路桥梁钢结构设计规范(附条文说明)[S]. 北京:中国铁道出版社, 2005.China Railway Bridge Survey and Design Institute Co., Ltd. TB 10002.2-2005, Code for design on steel structure of railway bridge[S]. Beijing:China Railway Publishing House, 2005.
[2] 中华人民共和国交通运输部. JTG D64-2015, 公路钢结构桥梁设计规范[S]. 北京:人民交通出版社, 2015.People’s Republic of China Ministry of Transport. JTG D64-2015, Specifications for design of highway steel bridge[S]. Beijing:People’s Transportation Press, 2015.
[3] 冯海舟, 熊健民. 大跨度钢桁梁斜拉桥预拱度分析[J]. 北方交通, 2013(3):57-60.FENG Haizhou, XIONG Jianmin. Analysis on the camber of large-span steel truss cable-stayed bridge[J]. Northern Communications, 2013(3):57-60.
[4] 冯沛. 大跨度铁路连续钢桁梁桥预拱度设置研究[J]. 铁道标准设计, 2016, 60(4):62-64.FENG Pei. Study on camber-setting of large span railway steel truss bridge[J]. Railway standard design, 2016, 60(4):62-64.
[5] 陈小佳, 崔太雷, 封仁博. 基于几何正装法的N式钢桁梁桥预拱度设置研究[J]. 铁道建筑, 2017(1):72-75.CHEN Xiaojia, CUI Tailei, FENG Renbo. Study on pre-camber setting for n-type steel truss bridge based on geometric-forward-installation method[J]. Railway engineering, 2017(1):72-75.
[6] 胡步毛, 艾宗良, 袁明, 等. 基于非线性规划实现钢桁连续梁预拱度[J]. 铁道工程学报, 2010, 27(4):49-52.HU Bumao, AI Zongliang, YUAN Ming, et al. Use nonlinear programming to achieve camber of steel truss continuous bridge[J]. Journal of railway engineering society, 2010, 27(4):49-52.
[7] 李佳莉, 张谢东, 陈卫东, 等. 基于多目标规划的连续钢桁梁预拱度设置研究[J]. 武汉理工大学学报(交通科学与工程版), 2016, 40(2):360-364.LI Jiali, ZHANG Xiedong, CHEN Weidong, et al. Multi-objective programming based study on pre-camber setting of steel truss continuous girder bridge[J]. Journal of Wuhan University of Technology (transportation science & engineering), 2016, 40(2):360-364.
[8] 向律楷, 鄢勇, 袁明, 等. 钢桁梁预拱度设置方法研究[J]. 四川建筑, 2015, 35(1):150-153.XIANG Lyukai, YAN Yong, YUAN Ming, et al. Study on pre-camber setting of truss bridge[J]. Sichuan architecture, 2015, 35(1):150-153.
[9] 蔡禄荣, 王荣辉, 王钰. 大跨度柏式钢桁梁桥厂制预拱度设置研究[J]. 铁道学报, 2013, 35(4):96-101.CAI Lurong, WANG Ronghui, WANG Yu. Study on plant precamber setting of large-span n type steel truss bridge[J]. Journal of the China railway society, 2013, 35(4):96-101.
[10] 苑仁安, 秦顺全, 王帆. 分阶段成形杆系结构几何非线性平衡方程[J]. 桥梁建设, 2014, 44(2):50-55.YUAN Renan, QIN Shunquan, WANG Fan. Equilibrium equation for geometric nonlinearity of frame structure formed in stages[J]. Bridge construction, 2014, 44(2):50-55.
[11] 许磊平, 秦顺全, 马润平. 基于平面壳单元的分阶段成形结构平衡方程[J]. 西南交通大学学报, 2013, 48(5):857-862.XU Leiping, QIN Shunquan, MA Runping. Equilibrium equation derivation of structures formed by stages based on plane shell element[J]. Journal of Southwest Jiaotong University, 2013, 48(5):857-862.

备注/Memo

备注/Memo:
收稿日期:2017-6-12。
基金项目:中国工程院重点咨询研究项目(2016-XZ-13).
作者简介:但启联(1983-),男,博士研究生.
通讯作者:但启联,E-mail:2010basilkaoyan@sina.com.
更新日期/Last Update: 2018-12-01