[1]陈玲玲,宋晓伟,王婕,等.下肢外骨骼系统摆动相非线性干扰观测器设计[J].哈尔滨工程大学学报,2018,39(12):1994-2000.[doi:10.11990/jheu.201706086]
 CHEN Lingling,SONG Xiaowei,WANG Jie,et al.Design of nonlinear disturbance observer for lower extremity exoskeleton system of swing phase[J].hebgcdxxb,2018,39(12):1994-2000.[doi:10.11990/jheu.201706086]
点击复制

下肢外骨骼系统摆动相非线性干扰观测器设计(/HTML)
分享到:

《哈尔滨工程大学学报》[ISSN:1006-6977/CN:61-1281/TN]

卷:
39
期数:
2018年12期
页码:
1994-2000
栏目:
出版日期:
2018-12-05

文章信息/Info

Title:
Design of nonlinear disturbance observer for lower extremity exoskeleton system of swing phase
作者:
陈玲玲12 宋晓伟1 王婕12 张腾宇3
1. 河北工业大学 人工智能与数据科学学院, 天津 300130;
2. 智能康复装置与检测技术教育部工程研究中心, 天津 300130;
3. 国家康复辅具研究中心, 北京 100176
Author(s):
CHEN Lingling12 SONG Xiaowei1 WANG Jie12 ZHANG Tengyu3
1. School of Artificial Intelligence, Hebei University of Technology, Tianjin 300130, China;
2. Engineering Research Center of Intelligent Rehabilitation, Ministry of Education, Tianjin 300130, China;
3. National Research Center for Rehabilitation Technical Aids, Beijing 100176, China
关键词:
下肢外骨骼人机共驱动系统摆动相动力学建模干扰观测器滑模控制仿真验证
分类号:
TP242
DOI:
10.11990/jheu.201706086
文献标志码:
A
摘要:
针对下肢外骨骼在运行过程中,穿戴者提供的主动力矩不确定问题,本文进行了基于干扰观测技术的摆动相控制方法研究。利用拉格朗日原理对简化后的实物模型进行动力学分析,建立下肢外骨骼摆动相模型。考虑模型的非线性、强耦合特征设计滑模控制器,基于干扰观测器对穿戴者的主动力矩进行估计,实现对滑模控制器的补偿,并对观测器/控制器综合设计的闭环系统稳定性进行证明。搭建下肢外骨骼控制系统仿真平台进行髋关节和膝关节的角度控制。实验结果证明,所设计的闭环系统对期望角度具有良好的跟随能力,可以有效抑制干扰的影响。

参考文献/References:

[1] HUO Weiguang, MOHAMMED S, MORENO J C, et al. Lower limb wearable robots for assistance and rehabilitation:a state of the art[J]. IEEE systems journal, 2016, 10(3):1068-1081.
[2] YOUNG A J, FERRIS D P. State of the art and future directions for lower limb robotic exoskeletons[J]. IEEE transactions on neural systems and rehabilitation engineering, 2017, 25(2):171-182.
[3] TSAI A C, LUH J J, LIN T T. A novel STFT-ranking feature of multi-channel EMG for motion pattern recognition[J]. Expert systems with applications, 2015, 42(7):3327-3341.
[4] 贾山, 韩亚丽, 路新亮, 等. 基于人体特殊步态分析的下肢外骨骼机构设计[J]. 机器人, 2014, 36(4):392-401, 410.JIA Shan, HAN Yali, LU Xinliang, et al. Design of lower extremity exoskeleton based on analysis on special human gaits[J]. Robot, 2014, 36(4):392-401, 410.
[5] MEFOUED S. A second order sliding mode control and a neural network to drive a knee joint actuated orthosis[J]. Neurocomputing, 2015, 155:71-79.
[6] ZHU Yanhe, CUI Jinxiang, ZHAO Jie. Biomimetic design and biomechanical simulation of a 15-DOF lower extremity exoskeleton[C]//IEEE International Conference on Robotics and Biomimetics. Shenzhen, China, 2013:1119-1124.
[7] 隋立明, 张立勋. 气动肌肉驱动步态康复训练外骨骼装置的研究[J]. 哈尔滨工程大学学报, 2011, 32(9):1244-1248.SUI Liming, ZHANG Lixun. Development of an actuated exoskeleton with pneumatic muscles for gait rehabilitation training[J]. Journal of Harbin Engineering University, 2011, 32(9):1244-1248.
[8] NAGARAJAN U, AGUIRRE-OLLINGER G, GOSWAMI A. Integral admittance shaping:a unified framework for active exoskeleton control[J]. Robotics and autonomous systems, 2016, 75:310-324.
[9] LIU Yanjun, GAO Ying, TONG Shaocheng, et al. Fuzzy approximation-based adaptive backstepping optimal control for a class of nonlinear discrete-time systems with dead-zone[J]. IEEE transactions on fuzzy systems, 2016, 24(1):16-28.
[10] 杨秀霞, 杨晓冬, 王亭, 等. 下肢携行外骨骼系统建模及控制[J]. 舰船电子工程, 2016, 36(4):45-48.YANG Xiuxia, YANG Xiaodong, WANG Ting, et al. Model and control of lower extreme exoskeleton system[J]. Ship electronic engineering, 2016, 36(4):45-48.
[11] MOHAMMED S, HUO Weiguang, HUANG Jian, et al. Nonlinear disturbance observer based sliding mode control of a human-driven knee joint orthosis[J]. Robotics and autonomous systems, 2016, 75:41-49.
[12] 丛德宏, 徐心和. 磁流变液智能假腿的摆动相控制[J]. 系统仿真学报, 2006, 18(Z2):916-918, 922.CONG Dehong, XU Xinhe. Swing phase control of intelligent lower limb prosthesis using magnetorheological fluid damper[J]. Journal of system simulation, 2006, 18(Z2):916-918, 922.
[13] 刘金琨, 孙富春. 滑模变结构控制理论及其算法研究与进展[J]. 控制理论与应用, 2007, 24(3):407-418.LIU Jinkun, SUN Fuchun. Research and development on theory and algorithms of sliding mode control[J]. Control theory & applications, 2007, 24(3):407-418.
[14] 刘静民. 中国成年人人体惯性参数国家标准的制定[D]. 北京:北京体育大学, 2004.LIU Jingmin. Establishment of national standard about inertial parameters of Chinese adults[D]. Beijing:Beijing Sport University, 2004.
[15] ANDRIKOPOULOS G, NIKOLAKOPOULOS G, MANESIS S. Novel considerations on static force modeling of pneumatic muscle actuators[J]. IEEE/ASME transactions on mechatronics, 2016, 21(6):2647-2659.

备注/Memo

备注/Memo:
收稿日期:2017-6-22。
基金项目:国家自然科学基金项目(61503118,61703135,61703134,61773151);河北省自然基金项目(F2016202327,F2017202119).
作者简介:陈玲玲(1981-),女,副教授;王婕(1986-),女,讲师,博士.
通讯作者:王婕,E-mail:wangjie@hebut.edu.cn.
更新日期/Last Update: 2018-12-01