[1]赵春晖,孟美玲,闫奕名.基于字典重构的高光谱图像亚像元目标检测[J].哈尔滨工程大学学报,2018,39(09):1582-1588.[doi:10.11990/jheu.201707008]
 ZHAO Chunhui,MENG Meiling,YAN Yiming.Sub-pixel target detection on hyperspectral image based on dictionary reconstruction[J].hebgcdxxb,2018,39(09):1582-1588.[doi:10.11990/jheu.201707008]
点击复制

基于字典重构的高光谱图像亚像元目标检测(/HTML)
分享到:

《哈尔滨工程大学学报》[ISSN:1006-6977/CN:61-1281/TN]

卷:
39
期数:
2018年09期
页码:
1582-1588
栏目:
出版日期:
2018-09-05

文章信息/Info

Title:
Sub-pixel target detection on hyperspectral image based on dictionary reconstruction
作者:
赵春晖 孟美玲 闫奕名
哈尔滨工程大学 信息与通信工程学院, 黑龙江 哈尔滨 150001
Author(s):
ZHAO Chunhui MENG Meiling YAN Yiming
College of Information and Communication Engineering, Harbin Engineering University, Harbin 150001, China
关键词:
高光谱图像亚像元目标目标检测稀疏表示字典重构
分类号:
TP751.5
DOI:
10.11990/jheu.201707008
文献标志码:
A
摘要:
稀疏表示的引入为高光谱遥感图像的目标检测提供了新途径,但在其检测过程中,由于过完备字典的构造是直接从高光谱图像中进行获取的,存在不确定性因素且无法实现对亚像元的准确检测。针对上述问题,本文提出了一种基于字典重构的高光谱图像亚像元目标检测算法。该算法利用无监督方法进行过完备字典的构造,确保过完备字典中包含部分目标像元的光谱信息,同时引入二元对立假设模型实现对高光谱图像中亚像元目标的检测。对模拟及真实高光谱遥感图像数据进行实验仿真,通过对实验结果三维图、ROC曲线以及AUC值的对比分析,得出本文所提出的算法,该算法不仅提高了检测精度而且更好地抑制了背景噪声。

参考文献/References:

[1] 赵春晖, 王立国, 齐滨. 高光谱遥感图像处理方法及应用[M]. 北京:电子工业出版社, 2016. ZHAO Chunhui, WANG Liguo, QIN Bin. Hyperspectral remote sensing images processing methods and applications[M]. Beijing:Publishing House of Electronics Industry, 2016.
[2] MASIA F, KARUNA A, BORRI P, et al. Hyperspectral image analysis for CARS, SRS, and raman data[J]. Journal of raman spectroscopy, 2015, 46(8):727-734.
[3] DU Qian, ZHANG Liangpei, ZHANG Bing, et al. Foreword to the special issue on hyperspectral remote sensing:Theory, methods, and applications[J]. IEEE journal of selected topics in applied earth observations and remote sensing, 2013, 6(2):459-465.
[4] STEFANOU M S, KEREKES J P. Image-derived prediction of spectral image utility for target detection applications[J]. IEEE transactions on geoscience and remote sensing, 2010, 48(4):1827-1833.
[5] KUMAR G V S, SIVAMURUGESAN V, SHARMILA N. MF based spectral unmixing for subpixel target detection in hyperspectral images[J]. International journal of applied engineering research, 2015, 10(55):292-296.
[6] EISMANN M T, STOCKER A D, NASRABADI N M. Automated hyperspectral cueing for civilian search and rescue[J]. Proceedings of the IEEE, 2009, 97(6):1031-1055.
[7] MANOLAKIS D, TRUSLOW E, PIEPER M, et al. Detection algorithms in hyperspectral imaging systems:An overview of practical algorithms[J]. IEEE signal processing magazine, 2014, 31(1):24-33.
[8] NASRABADI N M. Hyperspectral target detection:an overview of current and future challenges[J]. IEEE signal processing magazine, 2014, 31(1):34-44.
[9] GENG Xiurui, JI Luyan, SUN Kang, et al. CEM:more bands, better performance[J]. IEEE geoscience and remote sensing letters, 2014, 11(11):1876-1880.
[10] KWON H, NASRABADI N M. Kernel adaptive subspace detector for hyperspectral imagery[J]. IEEE geoscience and remote sensing letters, 2006, 3(2):271-275.
[11] KWON H, NASRABADI N M. A comparative study of kernel spectral matched signal detectors for hyperspectral target detection[C]//Proceedings Volume 5806, Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XI. Orlando, Florida, United States:SPIE, 2005:371-383.
[12] SCHARF L L, FRIEDLANDER B. Matched subspace detectors[J]. IEEE transactions on signal processing, 1994, 42(8):2146-2157.
[13] CHEN Yi, NASRABADI N M, TRAN T D. Sparse representation for target detection in hyperspectral imagery[J]. IEEE journal of selected topics in signal processing, 2011, 5(3):629-640.
[14] JIMENEZ L O, MORALES-MORELL A, CREUS A. Classification of hyperdimensional data based on feature and decision fusion approaches using projection pursuit, majority voting, and neural networks[J]. IEEE transactions on geoscience and remote sensing, 1999, 37(3):1360-1366.
[15] ZHANG Yuxiang, ZHANG Liangpei, DU Bo, et al. A nonlinear sparse representation-based binary hypothesis model for hyperspectral target detection[J]. IEEE journal of selected topics in applied earth observations and remote sensing, 2015, 8(6):2513-2522.
[16] 韦修喜, 周永权. 基于ROC曲线的两类分类问题性能评估方法[J]. 计算机技术与发展, 2010, 20(11):47-50. WEI Xiuxi, ZHOU Yongquan. A new performance categories evaluation method based on ROC curve[J]. Computer technology and development, 2010, 20(11):47-50.

相似文献/References:

[1]赵春晖,胡春梅,石红.采用选择性分段PCA算法的高光谱图像异常检测[J].哈尔滨工程大学学报,2010,(11):0.
 College of Information and Communication Engineering,Harbin Engineering University,Harbin,et al.Anomaly detection algorithm for hyperspectral image by using selective section principal component analysis[J].hebgcdxxb,2010,(09):0.
[2]赵春晖,胡春梅,石红.采用选择性分段PCA算法的高光谱图像异常检测[J].哈尔滨工程大学学报,2011,(01):109.[doi:doi:10.3969/j.issn.1006-7043.2011.01.020]
 ZHAO Chunhui,HU Chunmei,SHI Hong.Anomaly detection for a hyperspectral image by using a selective section principal component analysis algorithm[J].hebgcdxxb,2011,(09):109.[doi:doi:10.3969/j.issn.1006-7043.2011.01.020]
[3]刘振林,谷延锋,张晔.一种用于高光谱图像特征提取的子空间核方法[J].哈尔滨工程大学学报,2014,(02):238.[doi:10.3969/j.issn.10067043.201309025]
 LIU Zhenlin,GU Yanfeng,ZHANG Ye.A subspace kernel learning method for feature extraction of the hyperspectral image[J].hebgcdxxb,2014,(09):238.[doi:10.3969/j.issn.10067043.201309025]
[4]刘丹凤,王立国,赵亮.高光谱图像的同步彩色动态显示[J].哈尔滨工程大学学报,2014,(06):760.[doi:10.3969/j.issn.10067043.201306008]
 LIU Danfeng,WANG Liguo,ZHAO Liang.Dynamic display of the hyperspectral image synchronized colors[J].hebgcdxxb,2014,(09):760.[doi:10.3969/j.issn.10067043.201306008]
[5]杨京辉,王立国,钱晋希.基于相关向量机的高光谱图像解混方法[J].哈尔滨工程大学学报,2015,(02):267.[doi:10.3969/j.issn.1006-7043.201311016]
 YANG Jinghui,WANG Liguo,QIAN Jinxi.An unmixing algorithm based on the relevance vector machine for hyperspectral imagery[J].hebgcdxxb,2015,(09):267.[doi:10.3969/j.issn.1006-7043.201311016]
[6]赵春晖,靖晓昊,李威.基于StOMP稀疏方法的高光谱图像目标检测[J].哈尔滨工程大学学报,2015,(07):992.[doi:10.3969/j.issn.1006-7043.201404087]
 ZHAO Chunhui,JING Xiaohao,LI Wei.Hyperspectral image target detection algorithm based on StOMP sparse representation[J].hebgcdxxb,2015,(09):992.[doi:10.3969/j.issn.1006-7043.201404087]
[7]赵春晖,王佳,王玉磊.采用背景抑制和自适应阈值分割的高光谱异常目标检测[J].哈尔滨工程大学学报,2016,37(02):278.[doi:10.11990/jheu.201409035]
 ZHAO Chunhui,WANG Jia,WANG Yulei.Hyperspectral anomaly detection based on background suppression and adaptive threshold segmentation[J].hebgcdxxb,2016,37(09):278.[doi:10.11990/jheu.201409035]
[8]王立国,宛宇美,路婷婷,等.结合经验模态分解和Gabor滤波的高光谱图像分类[J].哈尔滨工程大学学报,2016,37(02):284.[doi:10.11990/jheu.201411032]
 WANG Liguo,WAN Yumei,LU Tingting,et al.Hyperspectral image classification by combining empirical mode decomposition with Gabor filtering[J].hebgcdxxb,2016,37(09):284.[doi:10.11990/jheu.201411032]
[9]王立国,杨月霜,刘丹凤.基于改进三重训练算法的高光谱图像半监督分类[J].哈尔滨工程大学学报,2016,37(06):849.[doi:10.11990/jheu.201505078]
 WANG Liguo,YANG Yueshuang,LIU Danfeng.Semi-supervised classification for hyperspectral image based on improved tri-training method[J].hebgcdxxb,2016,37(09):849.[doi:10.11990/jheu.201505078]
[10]赵春晖,王鑫鹏,闫奕名.基于密度背景纯化的高光谱异常检测算法[J].哈尔滨工程大学学报,2016,37(12):1722.[doi:10.11990/jheu.201511073]
 ZHAO Chunhui,WANG Xinpeng,YAN Yiming.Density background refinement-based anomaly detection algorithm for hyperspectral images[J].hebgcdxxb,2016,37(09):1722.[doi:10.11990/jheu.201511073]

备注/Memo

备注/Memo:
收稿日期:2017-7-3。
基金项目:国家自然科学基金项目(61405041,61571145);中央高校基本科研业务费面向国家重大需求培育计划项目(GK2080260167).
作者简介:赵春晖(1965-),男,教授,博士生导师.
通讯作者:赵春晖,E-mail:zhaochunhui@hrbeu.edu.cn
更新日期/Last Update: 2018-09-12