[1]袁煜明,王超,任振.通气管直径对半浸式螺旋桨水动力影响[J].哈尔滨工程大学学报,2019,40(02):227-233.[doi:10.11990/jheu.201707063]
 YUAN Yuming,WANG Chao,REN Zhen.Influence of diameter of vent pipe on hydrodynamic characteristics of surface piercing propeller[J].hebgcdxxb,2019,40(02):227-233.[doi:10.11990/jheu.201707063]
点击复制

通气管直径对半浸式螺旋桨水动力影响(/HTML)
分享到:

《哈尔滨工程大学学报》[ISSN:1006-6977/CN:61-1281/TN]

卷:
40
期数:
2019年02期
页码:
227-233
栏目:
出版日期:
2019-02-05

文章信息/Info

Title:
Influence of diameter of vent pipe on hydrodynamic characteristics of surface piercing propeller
作者:
袁煜明1 王超1 任振2
1. 哈尔滨工程大学 船舶工程学院, 黑龙江 哈尔滨 150001;
2. 上海交通大学 船舶海洋与建筑工程学院, 上海 200240
Author(s):
YUAN Yuming1 WANG Chao1 REN Zhen2
1. College of Shipbuilding Engineering, Harbin Engineering University, Harbin 150001, China;
2. School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
关键词:
半浸式螺旋桨通气现象通气管水动力特性数值分析全通气状态VOF方法滑移网络及技术
分类号:
U661.31
DOI:
10.11990/jheu.201707063
文献标志码:
A
摘要:
为了研究通气管在不同直径大小的情况下对半浸桨的水动力性能的影响,以一已在实船应用的半浸桨为研究对象,利用VOF方法与滑移网格技术相结合开展了系统的数值计算。采用841-B型半浸桨进行验证数值计算的可行性,在设计点附近,二者误差均小于5%,这说明采用CFD方法研究半浸桨的水动力特性是可行的。研究结果表明:在低航速下,随着通气量增加,使半浸桨更容易进入全通气状态,使推力系数Kt、扭矩系数10Kq都大幅下降,但效率有所提高,让主机转速迅速提高,让半浸桨更快进入工作段;在高航速下,随着通气量增加,空气腔厚度增加,叶栅效应更加强烈,水动力性能大幅下降,此时应把通气管收起。

参考文献/References:

[1] FURUYA O. A performance-prediction theory for partially submerged ventilated propellers[J]. Journal of fluid mechanics, 1985, 151:311-335.
[2] 刘希武, 倪兵, 赵峰, 等. 减压水池半浸桨空化水动力性能试验技术研究[J]. 船舶力学, 2001, 5(1):25-31.LIU Xiwu, NI Bing, ZHAO Feng, et al. Research on Experimental technique of cavitational hydrodynamics performance of semi-submerged propellers in depressurized towing tank[J]. Journal of ship mechanics, 2001, 5(1):25-31.
[3] 杨武刚, 张宇文, 阚雷. 高速水下航行体超空化通气参数数值研究[J]. 弹箭与制导学报, 2007, 27(4):198-200.YANG Wugang, ZHANG Yuwen, KAN Lei. Numerical research on the ventilation parameters of underwater supercavitating high speed vehicle[J]. Journal of projectiles, rockets, missiles and guidance, 2007, 27(4):198-200.
[4] HADLER J B, HECKER R. Performance of partially submerged propellers[C]//Proceedings of the 7th ONR Symposium on Naval Hydrodynamics. Rome, 1968.
[5] MISRA S C. Development of a four-bladed surface piercing propeller series[J]. Naval engineers journal, 2012, 124(4):105-138.
[6] CHUDLEY J, GRIEVE D, DTSON P K. Determination of transient loads on surface piercing propellers[R].[s.l.]:The royal institution of naval architects, 2002, 125-141.
[7] YOUNG Y L, KINNAS S A. Performance prediction of surface piercing propeller[J]. Journal of ship research, 2004, 28(4):288-304.
[8] YOUNG Y L. Numerical modeling of supercavitating and surface piercing propellers[D]. Austin:The University of Texas, 2002.
[9] YOUNG Y L, SAVANDER B R. Numerical analysis of large-scale surface-piercing propellers[J]. Ocean engineering, 2011, 38(13) 1368-1381.
[10] YARI E, GHASSEMI H. Hydrodynamic analysis of the surface-piercing propeller in unsteady open water condition using boundary element method[J]. International journal of naval architecture and ocean engineering, 2016, 8(1) 22-37.
[11] GHASSEMI H. Hydrodynamic characteristics of the surface-piercing propellers for the planing craft[J]. Journal of marine science and application, 2009, 8(4):267-274.
[12] SHADEMANI R, GHASSEMI H. Hydrodynamic characteristics of the surface piercing propeller for the paining craft[C]//Proceedings of the ASME 28th International Conference on Ocean, Offshore and Arctic Engineering. Honolulu, Hawaii, 2009.
[13] YARI E, GHASSEMI H. Numerical analysis of surface piercing propeller in unsteady conditions and cupped effect on ventilation pattern of blade cross-section[J]. Journal of marine science and technology, 2016, 21(3):501-516.
[14] CALIFANO A, STEEN S. Analysis of different propeller ventilation mechanisms by means of RANS simulations[C]//Proceedings of the 1st International Symposium on Marine Propulsors. Trondheim, Norway, 2009.
[15] CAPONNETTOM. RANSE simulations of surface piercing propellers[C]//Proceedings of 6th Numerical Towing Tank Symposium. Rome, 2003.
[16] ALIMIRZAZADEH S, ROSHAN S Z, SEIF M S. Unsteady RANS simulation of a surface piercing propeller in oblique flow[J]. Applied ocean research, 2016, 56:79-91.
[17] CALIFANO A, STEEN S. Numerical simulations of a fully submerged propeller subject to ventilation[J]. Ocean engineering, 2011, 38(14/15):1582-1599.

备注/Memo

备注/Memo:
收稿日期:2017-07-14。
基金项目:国家自然科学基金项目(51679052);国防基础科研计划项目(JCKY2016604B001).
作者简介:袁煜明,男,硕士研究生;王超,男,副教授.
通讯作者:王超,E-mail:wangchao0104@hrbeu.edu.cn
更新日期/Last Update: 2019-01-30