[1]王勇,严骏,王健,等.转子—定子型离心式水力空化发生器非定常空化形成机制[J].哈尔滨工程大学学报,2018,39(12):1887-1893.[doi:10.11990/jheu.201707108]
 WANG Yong,YAN Jun,WANG Jian,et al.Unsteady cavitation patterns in a rotor-stator centrifugal hydrodynamic cavitation generator[J].hebgcdxxb,2018,39(12):1887-1893.[doi:10.11990/jheu.201707108]
点击复制

转子—定子型离心式水力空化发生器非定常空化形成机制(/HTML)
分享到:

《哈尔滨工程大学学报》[ISSN:1006-6977/CN:61-1281/TN]

卷:
39
期数:
2018年12期
页码:
1887-1893
栏目:
出版日期:
2018-12-05

文章信息/Info

Title:
Unsteady cavitation patterns in a rotor-stator centrifugal hydrodynamic cavitation generator
作者:
王勇1 严骏1 王健2 刘厚林1 Matevz Dular3
1. 江苏大学 流体机械及工程技术研究中心, 江苏 镇江 212013;
2. 泰州学院 船舶与机电工程学院, 江苏 泰州 225300;
3. 卢布尔雅那大学 水轮机实验室, 卢布尔雅那 1000, 斯洛文尼亚
Author(s):
WANG Yong1 YAN Jun1 WANG Jian2 LIU Houlin1 Matevz DULAR3
1. Research Center of Fluid Machinery Engineering and Technology, Jiangsu University, Zhenjiang 212013, China;
2. School of Shipping and Mechatronic Engineering, Taizhou University, Taizhou 225300, China;
3. Laboratory for Water and Turbine Machines, Faculty of Mechanical Engineering, University of Ljubljana, Ljubljana 1000, Slovenia
关键词:
空化空化发生器离心泵可视化实验数值模拟水力空化转子定子钝头体空化尾涡空化楔形槽空化
分类号:
TV131.3
DOI:
10.11990/jheu.201707108
文献标志码:
A
摘要:
为了研究一种高效水力空化发生器的运行原理,采用试验测试与数值模拟结合的方法研究了一台转子—定子型离心式水力空化发生器内的非定常空化机制。数值计算与试验吻合较好,结果表明空化发生器内存在三种空化机制:钝头体绕流空化、尾涡空化和楔形槽空化,分别位于转子叶齿前缘、叶齿后侧和定子叶齿前缘,其中定子叶齿前缘空化具有明显的周期性。空泡整体分布不完全对称,定子叶齿前缘空化主要发生在蜗壳5-8断面间;转子叶齿前缘空化发生在8-1断面间,而后侧尾涡空化变化幅度较小。空泡体积含量呈周期性变化,与一对转子—定子叶齿的交错周期相吻合。研究成果可为离心式水力空化发生器的优化设计提供参考。

参考文献/References:

[1] 李大炜. 方形孔口多孔板水力空化处理难降解废水的试验研究[D]. 杭州:浙江工业大学, 2015.LI Dawei. Experimental study on degradation of refractory pollutants by hydrodynamic cavitation due to square orifices plates[D]. Hangzhou:Zhejiang University of Technology, 2015.
[2] GOGATE P R, PANDIT A B. A review and assessment of hydrodynamic cavitation as a technology for the future[J]. Ultrasonics sonochemistry, 2005, 12(1/2):21-27.
[3] HARVEY E N, LOOMIS A L. The destruction of luminous bacteria by high frequency sound waves[J]. Journal of bacteriology, 1929, 17(5):373-376.
[4] 李晓俊, 袁寿其, 潘中永, 等. 基于结构化网格的离心泵全流场数值模拟[J]. 农业机械学报, 2013, 44(7):50-54, 49.LI Xiaojun, YUAN Shouqi, PAN Zhongyong, et al. Numerical simulation of whole flow field for centrifugal pump with structured grid[J]. Transactions of the Chinese society for agricultural machinery, 2013, 44(7):50-54, 49.
[5] WANG Jian, PETKOVSEK M, LIU Houlin, et al. Combined numerical and experimental investigation of the cavitation erosion process[J]. Journal of fluids engineering, 2015, 137(5):051302.
[6] 刘昶, 董志勇, 陈乐, 等. 圆孔多孔板水力空化杀灭大肠杆菌的实验研究[J]. 中国环境科学, 2016, 36(8):2364-2370.LIU Chang, DONG Zhiyong, CHEN Le, et al. Experimental study of Escherichia coli killed by hydrodynamic cavitation due to circular multi-orifice plates[J]. China environmental science, 2016, 36(8):2364-2370.
[7] SIVAKUMAR M, PANDIT A B. Wastewater treatment:a novel energy efficient hydrodynamic cavitational technique[J]. Ultrasonics sonochemistry, 2002, 9(3):123-131.
[8] 陈利军, 吴纯德, 张捷鑫, 等. 水力空化强化H2O2氧化降解水中苯酚的研究[J]. 环境科学研究, 2006, 19(3):67-70.CHEN Lijun, WU Chunde, ZHANG Jiexin, et al. Degradation of phenol in water by hydrodynamic cavitation and H2O2[J]. Research of environmental sciences, 2006, 19(3):67-70.
[9] 王夙, 孙三祥, 高孟理, 等. 水力空化降解罗丹明B研究[J]. 中国给水排水, 2004, 20(12):46-48.WANG Su, SUN Sanxiang, GAO Mengli, et al. Hydrodynamic cavitation process for degradation of rhodamine B[J]. China water & wastewater, 2004, 20(12):46-48.
[10] 魏群, 肖波. 水力空化降解印染废水的初步研究[J]. 环境工程, 2007, 25(2):21-24.WEI Qun, XIAO Bo. Preliminary study on the dyieing wastewater treatment by hydrodynamic cavitation technique[J]. Environmental engineering, 2007, 25(2):21-24.
[11] 张晓冬, 杨会中, 李志义, 等. 水力空化对水中微生物的灭活作用及特性[J]. 化学工程, 2007, 35(10):53-56.ZHANG Xiaodong, YANG Huizhong, LI Zhiyi, et al. Effect and characteristic of hydrodynamic cavitation on inactivation of microbe in water[J]. Chemical engineering (China), 2007, 35(10):53-56.
[12] MOHOLKAR V S, PANDIT A B. Numerical investigations in the behaviour of one-dimensional bubbly flow in hydrodynamic cavitation[J]. Chemical engineering science, 2001, 56(4):1411-1418.
[13] 王永广, 赵连玉, 邓橙, 等. 基于孔板和文丘里管复合结构空化器的空化效果数值模拟[J]. 环境工程, 2012, 30(S2):458-460, 544.WANG Yongguang, ZHAO Lianyu, DENG Cheng, et al. Numerical simulation of cavitation effect of the composite cavitation generator based on the orifice plate and venturi tube[J]. Environmental engineering, 2012, 30(S2):458-460, 544.
[14] 李翔. 旋转空化发生器性能研究[D]. 杭州:浙江工业大学, 2013.LI Xiang. Performance of rotating cavitation reactor[D]. Hangzhou:Zhejiang University of Technology, 2013.
[15] PETKOVSEK M, ZUPANC M, DULAR M, et al. Rotation generator of hydrodynamic cavitation for water treatment[J]. Separation and purification technology, 2013, 118:415-423.
[16] PETKOVSEK M, MLAKAR M, LEVSTEK M, et al. A novel rotation generator of hydrodynamic cavitation for waste-activated sludge disintegration[J]. Ultrasonics sonochemistry, 2015, 26:408-414.
[17] YAKHOT V, ORSZAG S A. Renormalization group analysis of turbulence. I. Basic theory[J]. Journal of scientific computing, 1986, 1(1):3-51.
[18] SHI W D, ZHANG G J, ZHANG D S. Evaluation of turbulence models for the numerical prediction of transient cavitation around a hydrofoil[C]//IOP Conference Series:Materials Science and Engineering. 2013:062013.
[19] ZHOU Lingjiu, WANG Zhengwei. Numerical simulation of cavitation around a hydrofoil and evaluation of a RNG k-ε model[J]. Journal of fluids engineering, 2007, 130(1):011302.
[20] COUTIER-DELGOSHA O, FORTES-PATELLA R, REBOUD J L, et al. Experimental and numerical studies in a centrifugal pump with two-dimensional curved blades in cavitating condition[J]. Journal of fluids engineering, 2004, 125(6):970-978.
[21] ZWART P J, GERBER A G, BELAMRI T. A two-phase flow model for predicting cavitation dynamics[C]//5th International Conference on Multiphase Flow. Yokohama, 2004.
[22] OKITA K, KAJISHIMA T. Three-dimensional computation of unsteady cavitating flow in a cascade[C]//The 9th of International Symposium on Transport Phenomena and Dynamics of Rotating Machinery. Honolulu, 2002.

相似文献/References:

[1]孙存楼,王永生,黄斌.船舶喷水推进器特殊工况性能研究[J].哈尔滨工程大学学报,2011,(07):867.[doi:doi:10.3969/j.issn.1007-7043.2011.07.006]
 SUN Cunlou,WANG Yongsheng,HUANG Bin.Research on waterjet performance in special work conditions[J].hebgcdxxb,2011,(12):867.[doi:doi:10.3969/j.issn.1007-7043.2011.07.006]
[2]刘海军,王聪,邹振祝,等.圆柱体出筒过程头型对流体动力的影响[J].哈尔滨工程大学学报,2012,(06):690.[doi:10.3969/j.issn.1006-7043.201105026]
 LIU Haijun,WANG Cong,ZOU Zhenzhu,et al.Numerical investigation on the hydrodynamic characteristics of a cylinder of different head construction out of launch tube[J].hebgcdxxb,2012,(12):690.[doi:10.3969/j.issn.1006-7043.201105026]
[3]董红星,杨晓光,汤金勇,等.热探针法测量超声场强度分布[J].哈尔滨工程大学学报,2012,(07):911.[doi:10.3969/j.issn.1006-7043.201108016]
 DONG Hongxing,YANG Xiaoguang,TANG Jinyong,et al.Ultrasound intensity distribution measurement using a thermoelectric probe[J].hebgcdxxb,2012,(12):911.[doi:10.3969/j.issn.1006-7043.201108016]
[4]胡常莉,王国玉.头型对回转体非定常空化流动特性影响的实验研究[J].哈尔滨工程大学学报,2014,(05):624.[doi:10.3969/j.issn.10067043.201303046]
 HU Changli,WANG Guoyu.Experimental investigation of unsteady cavitating flows around axisymmetric bodies with different headforms[J].hebgcdxxb,2014,(12):624.[doi:10.3969/j.issn.10067043.201303046]
[5]陈勇,张合,马少杰,等.水下火箭弹头部空化流场的数值仿真研究[J].哈尔滨工程大学学报,2015,(01):29.[doi:10.3969/j.issn.1006-7043.201311037]
 CHEN Yong,ZHANG He,MA Shaojie,et al.Numerical simulation on the cavitation fluid field of an underwater rocket warhead[J].hebgcdxxb,2015,(12):29.[doi:10.3969/j.issn.1006-7043.201311037]
[6]洪锋,袁建平,张金凤,等.余热排出泵小破口失水事故空化特性数值分析[J].哈尔滨工程大学学报,2015,(03):297.[doi:10.3969/j.issn.1006-7043.201311083]
 HONG Feng,YUAN Jianping,ZHANG Jinfeng,et al.Numerical analysis of cavitating flow characteristics in residual heat removal pumps during the SBLOCA[J].hebgcdxxb,2015,(12):297.[doi:10.3969/j.issn.1006-7043.201311083]
[7]曹玉良,贺国,明廷锋,等.修正湍流粘度的混流泵空化非定常分析[J].哈尔滨工程大学学报,2016,37(05):678.[doi:10.11990/jheu.201503023]
 CAO Yuliang,HE Guo,MING Tingfeng,et al.Transient cavitation analysis of a mixed-flow pump by modifying turbulent viscosity[J].hebgcdxxb,2016,37(12):678.[doi:10.11990/jheu.201503023]
[8]叶金铭,王威,张凯奇,等.扭曲舵空化起始航速分析[J].哈尔滨工程大学学报,2016,37(12):1631.[doi:10.11990/jheu.201510066]
 YE Jinming,WANG Wei,ZHANG Kaiqi,et al.Analysis on the cavitation inception speed of a twisted rudder[J].hebgcdxxb,2016,37(12):1631.[doi:10.11990/jheu.201510066]
[9]叶金铭,于安斌,王威,等.桨后舵片空化的面元法数值计算方法[J].哈尔滨工程大学学报,2017,38(12):1844.[doi:10.11990/jheu.201607050]
 YE Jinming,YU Anbin,WANG Wei,et al.Numerical investigation of sheet cavitation of rudder behind propeller by surface-panel method[J].hebgcdxxb,2017,38(12):1844.[doi:10.11990/jheu.201607050]
[10]雷艳,高壮,仇滔,等.喷射压力对喷孔流量及内部空化的影响[J].哈尔滨工程大学学报,2018,39(05):949.[doi:10.11990/jheu.201611038]
 LEI Yan,GAO Zhuang,QIU Tao,et al.Influence of inlet pressure on flow rate and internal cavitation of nozzle[J].hebgcdxxb,2018,39(12):949.[doi:10.11990/jheu.201611038]

备注/Memo

备注/Memo:
收稿日期:2017-7-28。
基金项目:国家自然科学基金项目(51609164,51779106);江苏省自然科学基金项目(BK20160574);江苏省产学研联合创新资金—前瞻性联合研究项目(BY2015064-10);江苏省科技支撑项目(BE2014879);江苏省“六大人才高峰”高层次人才项目(GBZB-017);泰州学院博士/教授项目(QD2013002);流体及动力机械教育部重点实验室(西华大学)开放课题(szjj2016-068);泰州市“311高层次人才培养工程”项目(RCPY201823).
作者简介:王勇(1982-),男,研究员,博士生导师;王健(1987-),男,讲师,博士研究生.
通讯作者:王健,E-mail:arieskin@126.com.
更新日期/Last Update: 2018-12-01