[1]闵海涛,彭文飞,吴焕铭,等.断面收缩率对楔横轧42CrMo/Q235层合轴界面结合特性的影响[J].哈尔滨工程大学学报,2018,39(07):1239-1244.[doi:10.11990/jheu.201708050]
 MIN Haitao,PENG Wenfei,WU Huanming,et al.Influence of the area reduction on interfacial bonding properties of the cross-wedge rolled 42CrMo/Q235 laminated shaft[J].hebgcdxxb,2018,39(07):1239-1244.[doi:10.11990/jheu.201708050]
点击复制

断面收缩率对楔横轧42CrMo/Q235层合轴界面结合特性的影响(/HTML)
分享到:

《哈尔滨工程大学学报》[ISSN:1006-6977/CN:61-1281/TN]

卷:
39
期数:
2018年07期
页码:
1239-1244
栏目:
出版日期:
2018-07-05

文章信息/Info

Title:
Influence of the area reduction on interfacial bonding properties of the cross-wedge rolled 42CrMo/Q235 laminated shaft
作者:
闵海涛12 彭文飞12 吴焕铭12 徐东明12 吴志军12 束学道12
1. 宁波大学 机械工程与力学学院, 浙江 宁波 315211;
2. 宁波大学 浙江省零件轧制成形技术研究重点实验室, 浙江 宁波 315211
Author(s):
MIN Haitao12 PENG Wenfei12 WU Huanming12 XU Dongming12 WU Zhijun12 SHU Xuedao12
1. College of Mechanical Engineering and Mechanics, Ningbo University, Ningbo 315211, China;
2. Zhejiang Provincial Key Laboratory of Part Rolling Technology, Ningbo University, Ningbo 315211, China
关键词:
楔横轧断面收缩率42CrMo/Q235复合材料层合轴界面结合特性影响规律
分类号:
TG335.19
DOI:
10.11990/jheu.201708050
文献标志码:
A
摘要:
断面收缩率为楔横轧工艺的重要参数,对轧件的成形质量具有显著影响。本文采用楔横轧方法成形42CrMo/Q235层合轴,探究断面收缩率对楔横轧42CrMo/Q235层合轴的界面结合强度、界面显微组织、元素Cr扩散、显微硬度以及拉伸断口形貌等界面特性的影响。研究结果表明:经过楔横轧高温轧制成形,基材Q235与覆材42CrMo实现良好的冶金结合,界面结合强度随断面收缩率的增加而增大。随断面收缩率增加,结合界面处的晶粒度减小,Cr元素由覆材42CrMo向基材Q235的扩散深度增加,与界面距离相同位置处的显微硬度增加;与此同时,随着断面收缩率增加,拉伸断口韧窝尺寸减小,韧窝氧化物颗粒越弥散。但当断面收缩率在65%以上时,轧件覆层易缩颈或发生断裂。

参考文献/References:

[1] 张显余, 付长安, 黄秋水. 飞机减摆器断轴失效分析及改进设计研究[J]. 飞机设计, 2009, 29(5):16-18, 23.ZHANG Xianyu, FU Chang’an, HUANG Qiushui. Losing efficiency analysis and improved design of broken shaft of vibration reducer on a certain aircraft[J]. Aircraft design, 2009, 29(5):16-18, 23.
[2] ROJO I, PSARRA A, PACHIDIS V, et al. Evaluation of the energy dissipated as friction/heat between turbines following shaft failure[C]//Proceedings of the ASME Turbo Expo 2010:Power for Land, Sea, and Air. Glasgow, UK, 2010:1345-1352.
[3] CASSADA W, LIU J, TALEY J. Aluminum alloys for aircraft structure[J]. Advanced materials processes, 2002, 160(12):27-29.
[4] 黄江华, 刘晋平, 王宝雨, 等. 4Cr9Si2马氏体钢气门楔横轧工艺研究[J]. 中南大学学报(自然科学版), 2013, 44(7):2744-2750.HUANG Jianghua, LIU Jinping, WANG Baoyu, et al. Process research on 4Cr9Si2 martensite steel valve in CWR[J]. Journal of Central South University (science and technology), 2013, 44(7):2744-2750.
[5] 姜越, 尹钟大, 朱景川, 等. 超高强度马氏体时效钢的发展[J]. 特殊钢, 2004, 25(2):1-5.JIANG Yue, YIN Zhongda, ZHU Jingchuan, et al. Development of ultra-high strength maraging steel[J]. Special steel, 2004, 25(2):1-5.
[6] 胡正寰, 张康生, 王宝雨, 等. 楔横轧零件成形技术与模拟仿真[M]. 北京:冶金工业出版社, 2004.HU Zhenghuan, ZHANG Kangsheng, WANG Baoyu, et al. Formed technology and simulation of parts about the cross-wedge rolling[M]. Beijing:Metallurgical Industry Press, 2004.
[7] PAN S C, HUANG M N, TZOU G Y, et al. Analysis of asymmetrical cold and hot bond rolling of unbounded clad sheet under constant shear friction[J]. Journal of materials processing technology, 2006, 177(1/2/3):114-120.
[8] MANDAL M, PAL S K. Pseudo-bond graph modelling of temperature distribution in a through-process steel rolling[J]. Mathematics and computers in simulation, 2008, 77(1):81-95.
[9] 宗家富, 张文志, 许秀梅, 等. 双金属板热轧复合模拟及最小相对压下量的确定[J]. 燕山大学学报, 2005, 29(1):27-33.ZONG Jiafu, ZHANG Wenzhi, XU Xiumei, et al. Simulation on hot rolling compounding of two metal plates and determination of minimum relative reduction[J]. Journal of Yanshan University, 2005, 29(1):27-33.
[10] 陈鑫, 李龙, 周德敬. 冷轧铝钢复合板初始及稳定复合压下量的确定[J]. 塑性工程学报, 2015, 22(3):127-132.CHEN Xin, LI Long, ZHOU Dejing. Research of the initial and stable bonding reduction of Al-St cladding plates by cold roll bonding[J]. Journal of plasticity engineering, 2015, 22(3):127-132.
[11] POZUELO M, CARREÑO F, CARSÍM, et al. Influence of interfaces on the mechanical properties of ultrahigh carbon steel multilayer laminates[J]. International journal of materials research, 2007, 98(1):47-52.
[12] 李德江. 钛/铜复合棒轧制复合工艺及界面结合机理研究[D]. 昆明:昆明理工大学, 2004.LI Dejiang. Copper composite rod rolling composite process and interface bonding mechanism[D]. Kunming:Kunming University of Science and Technology, 2004.
[13] 刘新华, 邹文江, 付华栋, 等. 铜/钛双金属复合管的热旋锻制备及其界面组织性能[J]. 稀有金属, 2017, 41(4):364-370.LIU Xinhua, ZOU Wenjiang, FU Huadong, et al. Cu/Ti bimetal composite pipe fabricated by heating rotary swaging forming and its interface, microstructure and properties[J]. Chinese journal of rare metals, 2017, 41(4):364-370.
[14] 董晓萌, 任学平, 王耀奇, 等. 叠轧Ti/Al复合板结构与力学性能研究[J]. 稀有金属, 2017, 41(11):1208-1213.DONG Xiaomeng, REN Xueping, WANG Yaoqi, et al. Structure and mechanical properties of Ti/Al multilayered composite[J]. Chinese journal of rare metals, 2017, 41(11):1208-1213.
[15] 周丽, 王唱舟, 张星星, 等. SiCp/Al复合材料热轧过程的有限元模拟[J]. 金属学报, 2015, 51(7):889-896.ZHOU Li, WANG Changzhou, ZHANG Xingxing, et al. Finite element simulation of hot rolling process for SiCp/Al composites[J]. Acta metallurgica sinica, 2015, 51(7):889-896.
[16] 黄华贵, 刘文文, 叶丽芬, 等. Cu/Al双辊异温铸轧复合界面局部熔合机理[J]. 哈尔滨工程大学学报, 2016, 37(3):432-437.HUANG Huagui, LIU Wenwen, YE Lifen, et al. The mechanism of interface local fusion for Cu/Al cladding strip fabricated in twin-roll casting and bonding process at different temperatures[J]. Journal of Harbin Engineering University, 2016, 37(3):432-437.
[17] 彭文飞, 朱健, 束学道. 工艺参数对楔横轧42CrMo/Q235复合材料层合轴厚径比的影响[J]. 复合材料学报, 2017, 34(1):160-167.PENG Wenfei, ZHU Jian, SHU Xuedao. Influence of process parameters on thickness-radius ratio of cross-wedge rolling of laminated shaft of 42CrMo/Q235 composites[J]. Acta materiae compositae sinica, 2017, 34(1):160-167.
[18] 吴志军. 楔横轧复合材料42CrMo/Q235层合轴复合机理实验研究[D]. 宁波:宁波大学, 2017.WU Zhijun. Experimental research on bonding mechanism of the cross-wedge rolling 42CrMo/Q235 composite shaft[D]. Ningbo:Ningbo University, 2017.

备注/Memo

备注/Memo:
收稿日期:2017-08-20。
基金项目:国家自然科学基金项目(51405248);山东省重点研发计划(2016ZDJQ0604);浙江省自然科学基金项目(LY18E050006);宁波市自然科学基金项目(2017A610088);宁波市产业技术应用重大专项项目(2017B610046).
作者简介:闵海涛(1989-),男,硕士研究生;彭文飞(1983-),男,副教授,博士后.
通讯作者:彭文飞,E-mail:pengwenfei@nbu.edu.cn
更新日期/Last Update: 2018-07-07