[1]王晨阳,彭敏俊,夏庚磊,等.一体化压水堆非能动余热排出系统可靠性分析[J].哈尔滨工程大学学报,2018,39(12):1910-1917.[doi:10.11990/jheu.201708056]
 WANG Chenyang,PENG Minjun,XIA Genglei,et al.Reliability assessment of a passive residual heat removal system for IPWR[J].hebgcdxxb,2018,39(12):1910-1917.[doi:10.11990/jheu.201708056]
点击复制

一体化压水堆非能动余热排出系统可靠性分析(/HTML)
分享到:

《哈尔滨工程大学学报》[ISSN:1006-6977/CN:61-1281/TN]

卷:
39
期数:
2018年12期
页码:
1910-1917
栏目:
出版日期:
2018-12-05

文章信息/Info

Title:
Reliability assessment of a passive residual heat removal system for IPWR
作者:
王晨阳 彭敏俊 夏庚磊 丛腾龙
哈尔滨工程大学 核安全与仿真技术国防重点学科实验室, 黑龙江 哈尔滨 150001
Author(s):
WANG Chenyang PENG Minjun XIA Genglei CONG Tenglong
Fundamental Science on Nuclear Safety and Simulation Technology Laboratory, Harbin Engineering University, Harbin 150001, China
关键词:
非能动系统可靠性响应面概率安全分析一体化压水堆RELAP5神经网络功能失效
分类号:
TL33
DOI:
10.11990/jheu.201708056
文献标志码:
A
摘要:
为了提高计算非能动安全系统功能失效概率时的计算效率,量化非能动系统的可靠性,推动非能动安全系统的发展,本文采用层次分析法选定关键参数,使用RELAP5进行一体化压水堆IPWR200的热工水力模型的建立,进行不确定性传递得到系统响应值形成训练集。训练人工神经网络作为复杂热工水力程序的替代模型,并利用响应面法计算了非能动余热排出系统的物理过程失效概率,最后将结果整合到硬件失效的故障树分析模型中。结果表明:IPWR200非能动余热排出系统可靠性较高,物理过程失效是导致系统失效的关键因素。

参考文献/References:

[1] 谢国锋, 何旭洪, 童节娟, 等. 响应面方法计算HTR-10余热排出系统物理过程的失效概率[J]. 物理学报, 2007, 56(6):3192-3197.XIE Guofeng, HE Xuhong, TONG Jiejuan, et al. Calculating physical failure probability of HTR-10’s residual heat removal system by response surface method[J]. Acta physica sinica, 2007, 56(6):3192-3197.
[2] MARQUÈS M, PIGNATEL J F, SAIGNES P, et al. Methodology for the reliability evaluation of a passive system and its integration into a probabilistic safety assessment[J]. Nuclear engineering and design, 2005, 235(24):2612-2631.
[3] BURGAZZI L. Evaluation of uncertainties related to passive systems performance[J]. Nuclear engineering and design, 2004, 230(1/2/3):93-106.
[4] BURGAZZI L. Reliability study of a special decay heat removal system of a gas-cooled fast reactor demonstrator[J]. Nuclear engineering and design, 2014, 280:473-480.
[5] BURGAZZI L. Addressing the challenges posed by advanced reactor passive safety system performance assessment[J]. Nuclear engineering and design, 2011, 241(5):1834-1841.
[6] MARQUÈS M, PIGNATEL J F, D’AURIA F, et al. Reliability methods for passive systems[C]//Proceedings of 2004 International Congress on Advances in Nuclear Power Plants. Pittsburgh, PA, 2004:13-17.
[7] NAYAK A K, JAIN V, GARTIA M R, et al. Reliability assessment of passive containment isolation system using APSRA methodology[J]. Annals of nuclear energy, 2008, 35(12):2270-2279.
[8] 谢国锋, 童节娟, 何旭洪, 等. 用Monte Carlo方法计算HTR-10余热排出系统物理过程的失效概率[J]. 核动力工程, 2008, 29(2):85-87.XIE Guofeng, TONG Jiejuan, HE Xuhong, et al. Calculation of physical failure probability of HTR-10 residual heat removal system by Monte Carlo method[J]. Nuclear power engineering, 2008, 29(2):85-87.
[9] SCHULZ T L. Westinghouse AP1000 advanced passive plant[J]. Nuclear engineering and design, 2006, 236(14/15/16):1547-1557.
[10] WANG Baosheng, WANG Dongqing, JIANG Jin, et al. Efficient estimation of the functional reliability of a passive system by means of an improved Line Sampling method[J]. Annals of nuclear energy, 2013, 55:9-17.
[11] WANG Baosheng, WANG Dongqing, JIANG Jin, et al. Efficient functional reliability estimation for a passive residual heat removal system with subset simulation based on importance sampling[J]. Progress in nuclear energy, 2015, 78:36-46.
[12] YU Yu, MA Guohang, HAO Zulong, et al. Correlation analysis for screening key parameters for passive system reliability analysis[J]. Annals of nuclear energy, 2015, 77:23-29.
[13] ZIO E, PEDRONI N. Building confidence in the reliability assessment of thermal-hydraulic passive systems[J]. Reliability engineering & system safety, 2009, 94(2):268-281.
[14] ZIO E, PEDRONI N. How to effectively compute the reliability of a thermal-hydraulic nuclear passive system[J]. Nuclear engineering and design, 2011, 241(1):310-327.
[15] MATHEWS T S, ARUL A J, PARTHASARATHY U, et al. Integration of functional reliability analysis with hardware reliability:an application to safety grade decay heat removal system of Indian 500 MWe PFBR[J]. Annals of nuclear energy, 2009, 36(4):481-492.
[16] RAMAKRISHNAN M. Integration of functional reliability analysis and system hardware reliability through Monte Carlo simulation[J]. Annals of nuclear energy, 2016, 95:54-63.
[17] 刘建阁, 彭敏俊, 蒋立国. 多用途一体化轻水堆初步设计方案和安全分析[J]. 原子能科学技术, 2009, 43(增刊1):210-214.LIU Jian’ge, PENG Minjun, JIANG Liguo. Primary design and safety analysis of multi-application integrated light water reactor[J]. Atomic energy science and technology, 2009, 43(Suppl.1):210-214.
[18] 蒋立志, 蔡琦, 张永发. 核动力装置非能动系统可靠性及参数敏感性分析[J]. 核动力工程, 2017, 38(5):91-95.JIANG Lizhi, CAI Qi, ZHANG Yongfa. Reliability and parameter sensitivity analysis of passive system in nuclear power plants[J]. Nuclear power engineering, 2017, 38(5):91-95.
[19] 潘晓磊, 王家群, 胡丽琴, 等. 基于响应面拟合方法中国铅基研究实验堆非能动余热排出系统可靠性分析[J]. 核技术, 2016, 39(5):050602.PAN Xiaolei, WANG Jiaqun, HU Liqin, et al. Response-surface-fitting method based reliability analysis for passive decay heat removal system of China lead-based research reactor[J]. Nuclear techniques, 2016, 39(5):050602.
[20] MA Guohang, YU Yu, HUANG Xiong, et al. Screening key parameters related to passive system performance based on analytic hierarchy process[J]. Annals of nuclear energy, 2015, 85:1141-1151.
[21] KIRCHSTEIGER C. A new approach to quantitative assessment of reliability of passive systems[J]. Safety science, 2005, 43(10):771-777.
[22] 夏少雄, 王家群, 潘晓磊, 等. 中国铅基研究堆非能动余热排出系统可靠性分析[J]. 核技术, 2015, 38(2):020605.XIA Shaoxiong, WANG Jiaqun, PAN Xiaolei, et al. Reliability analysis of passive decay heat removal system of China lead-based research reactor[J]. Nuclear techniques, 2015, 38(2):020605.
[23] BUCKNOR M, GRABASKAS D, BRUNETT A J, et al. Advanced reactor passive system reliability demonstration analysis for an external event[J]. Nuclear engineering and technology, 2017, 49(2):360-372.
[24] HELTON J C, DAVIS F J. Latin hypercube sampling and the propagation of uncertainty in analyses of complex systems[J]. Reliability engineering & system safety, 2003, 81(1):23-69.
[25] XIA Genglei, PENG Minjun, DU Xue. Calculation analysis on the natural circulation of a passive residual heat removal system for IPWR[J]. Annals of nuclear energy, 2014, 72:189-197.
[26] 张矾, 崔震华, LEE J C. 用人工神经网络方法进行非能动安全壳冷却系统可靠性分析[J]. 核科学与工程, 2004, 24(1):44-48, 23.ZHANG Fan, CUI Zhenhua, LEE J C. Reliability quantification of PCCS through artificial neural network algorithm[J]. Chinese journal of nuclear science and engineering, 2004, 24(1):44-48, 23.
[27] 郭海宽, 赵新文, 蔡琦, 等. AP1000非能动余热排出系统可靠性与概率安全评价模型的融合[J]. 核动力工程, 2017, 38(6):9-13.GUO Haikuan, ZHAO Xinwen, CAI Qi, et al. Integrating reliability of passive residual heat removal system for AP1000 into probabilistic safety assessment[J]. Nuclear power engineering, 2017, 38(6):9-13.

相似文献/References:

[1]李静梅,吴艳霞,沈晶,等.改进的CFCSS控制流检测算法[J].哈尔滨工程大学学报,2011,(06):814.[doi:doi:10.3969/j.issn.1006-7043.2011.06.020]
 LI Jingmei,WU Yanxia,SHEN Jing,et al.An improved control flow checking algorithm based on CFCSS[J].hebgcdxxb,2011,(12):814.[doi:doi:10.3969/j.issn.1006-7043.2011.06.020]
[2]胡占齐,解亚飞,刘金超.超重型数控镗铣床精度可靠性研究[J].哈尔滨工程大学学报,2011,(12):1599.[doi:doi:10.3969/j.issn.1006-7043.2011.12.008]
 HU Zhanqi,XIE Yafei,LIU Jinchao.The research on accuracy reliability of super-heavy CNC boring-mill machine tools[J].hebgcdxxb,2011,(12):1599.[doi:doi:10.3969/j.issn.1006-7043.2011.12.008]
[3]邱金水,李少杰,刘少刚,等.舰船特种阀门极少失效条件下可靠性寿命研究[J].哈尔滨工程大学学报,2012,(09):1086.[doi:10.3969/j.issn.1006-7043.201110065]
 QIU Jinshui,LI Shaojie,LIU Shaogang,et al.Research on the reliability life of a vessel special valve based on few-failure data[J].hebgcdxxb,2012,(12):1086.[doi:10.3969/j.issn.1006-7043.201110065]
[4]高建雄,安宗文,寇海霞.随机恒幅载荷下结构疲劳累积损伤的概率模型[J].哈尔滨工程大学学报,2017,38(02):263.[doi:10.11990/jheu.201509085]
 GAO Jianxiong,AN Zongwen,KOU Haixia.Structural probabilistic model of fatigue cumulative damage under uncertain cyclic load[J].hebgcdxxb,2017,38(12):263.[doi:10.11990/jheu.201509085]
[5]张超逸,刘海洋,李金海,等.基于可靠性的北斗系统BCH码擦除译码算法[J].哈尔滨工程大学学报,2017,38(09):1426.[doi:10.11990/jheu.201605010]
 ZHANG Chaoyi,LIU Haiyang,LI Jinhai,et al.Reliability-based decoding erasure algorithm for BCH code in the BeiDou system[J].hebgcdxxb,2017,38(12):1426.[doi:10.11990/jheu.201605010]
[6]马朝臣,张亚杰,张虹.车用涡轮增压器启停冲击平台仿真及应用[J].哈尔滨工程大学学报,2017,38(09):1470.[doi:10.11990/jheu.201605039]
 MA Chaochen,ZHANG Yajie,ZHANG Hong.Test bench for vehicle turbocharger durability under start-stop working conditions: simulation and applied research[J].hebgcdxxb,2017,38(12):1470.[doi:10.11990/jheu.201605039]
[7]程建华,孙湘钰,牟宏杰,等.冗余式捷联惯导系统多故障的检测与隔离[J].哈尔滨工程大学学报,2018,39(02):358.[doi:10.11990/jheu.201703029]
 CHENG Jianhua,SUN Xiangyu,MU Hongjie,et al.Multi-fault detection and isolation for redundancy strapdown inertial navigation system[J].hebgcdxxb,2018,39(12):358.[doi:10.11990/jheu.201703029]
[8]袁宇翔,邹斌.高可靠性车载惯性传感器冗余配置方案优化技术研究[J].哈尔滨工程大学学报,2018,39(08):1369.[doi:10.11990/jheu.201801055]
 YUAN Yuxiang,ZOU Bin.Optimization of redundant configuration scheme for vehicle inertial sensors with high reliability[J].hebgcdxxb,2018,39(12):1369.[doi:10.11990/jheu.201801055]
[9]赵国锋,宋恩哲,姚崇,等.柴油机热冗余控制数据共享与切换方法[J].哈尔滨工程大学学报,2018,39(12):1963.[doi:10.11990/jheu.201708060]
 ZHAO Guofeng,SONG Enzhe,YAO Chong,et al.Data sharing and switchover method of hot-redundant diesel engine control[J].hebgcdxxb,2018,39(12):1963.[doi:10.11990/jheu.201708060]

备注/Memo

备注/Memo:
收稿日期:2017-8-21。
作者简介:王晨阳(1992-),男,博士研究生;彭敏俊(1968-),男,教授,博士生导师.
通讯作者:彭敏俊,E-mail:heupmj@163.com.
更新日期/Last Update: 2018-12-01