[1]李裕龙,廖洪烈,胡湛,等.高精度深海立管涡激振动数值预报[J].哈尔滨工程大学学报,2019,40(08):1414-1419.[doi:10.11990/jheu.201709124]
 LI Yulong,LIAO Honglie,HU Zhan,et al.High accuracy deep sea riser VIV numerical analysis[J].hebgcdxxb,2019,40(08):1414-1419.[doi:10.11990/jheu.201709124]
点击复制

高精度深海立管涡激振动数值预报(/HTML)
分享到:

《哈尔滨工程大学学报》[ISSN:1006-6977/CN:61-1281/TN]

卷:
40
期数:
2019年08期
页码:
1414-1419
栏目:
出版日期:
2019-08-05

文章信息/Info

Title:
High accuracy deep sea riser VIV numerical analysis
作者:
李裕龙1 廖洪烈2 胡湛3 罗向欣1
1. 中山大学 海洋工程与技术学院, 广东 珠海 519082;
2. 广州船舶及海洋工程设计研究院, 广东 广州 119077;
3. 中山大学 海洋科学学院, 广东 广州 119077
Author(s):
LI Yulong1 LIAO Honglie2 HU Zhan3 LUO Xiangxin1
1. College of Marine Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China;
2. Guangzhou Marine Engineering Corporation, Guangzhou 119077, China;
3. College of Marine Science, Sun Yat-sen University, Guangzhou 119077, China
关键词:
流固耦合Common-Refinement方法非匹配网格涡激振动有限元法
分类号:
U661.31
DOI:
10.11990/jheu.201709124
文献标志码:
A
摘要:
针对深海立管涡激振动问题,提出一种高精度的数值预报方法。基于三维Common-Refinement方法,研究了离散后不可压缩流体与非线性超弹性体的非重叠子区域之间的耦合接触面的空间插值。采用Petrov-Galerkin有限元法离散不可压缩流体,并对大变形弹性结构体使用连续Galerkin有限元法行离散。同时使用任意的Lagrangian-Eulerian(ALE)方法处理流固网格的大幅变形,并且采用全解耦的隐式分区方法去分别求解流体域和结构域。基于Common-Refinement方法的空间插值的准确性和可靠性,满足两者之间液体和弹性体耦合界面间牵引力的平衡条件。本方将Common-Refinement方法应用深海立管涡激振动问题,并与文献进行了对比。求解结果表明:本文方法在海洋工程流固耦合问题中具有足够的准确性和可靠性。

参考文献/References:

[1] FARHAT C, VAN DER ZEE K G, GEUZAINE P. Provably second-order time-accurate loosely-coupled solution algorithms for transient nonlinear computational aeroelasticity[J]. Computer methods in applied mechanics and engineering, 2006, 195(17/18):1973-2001.
[2] DE BOER A, VAN ZUIJLEN A, BIJL H. Review of coupling methods for non-matching meshes[J]. Computer methods in applied mechanics and engineering, 2007, 196(8):1515-1525.
[3] DE BOER A, VAN ZUIJLEN A H, BIJL H. Comparison of conservative and consistent approaches for the coupling of non-matching meshes[J]. Computer methods in applied mechanics and engineering, 2008, 197(49/50):4284-4297.
[4] JAIMAN R K, JIAO X, GEUBELLE P H, et al. Conservative load transfer along curved fluid-solid interface with non-matching meshes[J]. Journal of computational physics, 2006, 218(1):372-397.
[5] JAIMAN R K, JIAO X, GEUBELLE P H, et al. Conservative load transfer along curved fluid-solid interface with non-matching meshes[J]. Journal of computational physics, 2006, 218(1):372-397.
[6] FARHAT C, VAN DER ZEE K G, GEUZAINE P. Provably second-order time-accurate loosely-coupled solution algorithms for transient nonlinear computational aeroelasticity[J]. Computer methods in applied mechanics and engineering, 2006, 195(17/18):1973-2001.
[7] DE BOER A, VAN ZUIJLEN A, BIJL H. Review of coupling methods for non-matching meshes[J]. Computer methods in applied mechanics and engineering, 2007, 196(8):1515-1525.
[8] DE BOER A, VAN ZUIJLEN A H, BIJL H. Comparison of conservative and consistent approaches for the coupling of non-matching meshes[J]. Computer methods in applied mechanics and engineering, 2008, 197(49/50):4284-4297.
[9] JAIMAN R K, JIAO X, GEUBELLE P H, et al. Conservative load transfer along curved fluid-solid interface with non-matching meshes[J]. Journal of computational physics, 2006, 218(1):372-397.
[10] JIAO Xiangmin, HEATH M T. Common-Refinement-based data transfer between non-matching meshes in multiphysics simulations[J]. International journal for numerical methods in engineering, 2004, 61(14):2402-2427.
[11] JIAO Xiangmin, HEATH M T. Overlaying surface meshes, part I:Algorithms[J]. International journal of computational geometry & applications, 2004, 14(6):379-402.
[12] JIAO Xiangmin, HEATH M T. Overlaying surface meshes, part Ⅱ:Topology preservation and feature matching[J]. International journal of computational geometry & applications, 2004, 14(6):403-419.
[13] JANDRON M A, HURD R C, BELDEN J L, et alModeling of hyperelastic water-skipping spheres using abaqus/explicit[C]//SIMULIA Community Conference, 2014.
[14] JANSEN K E, WHITTING C H, HULBERT G M. A generalized-α method for integrating the filtered Navier-Stokes equations with a stabilized finite element method[J]. Computer methods in applied mechanics and engineering, 2000, 190(3/4):305-319.
[15] JOSHI V, JAIMAN R K. A variationally bounded scheme for delayed detached eddy simulation:Application to vortex-induced vibration of offshore riser[J]. Computers & fluids, 157:84-111.

相似文献/References:

[1]杨明绥,王同庆,范真真.粘弹性材料声阻抗非局域特性的数值研究[J].哈尔滨工程大学学报,2011,(06):724.[doi:doi:10.3969/j.issn.1006-7043.2011.06.006]
 YANG Mingsui,WANG Tongqing,FAN Zhenzhen.Study of the numerical simulation of a non-local property of acoustic impedance in viscoelastic material[J].hebgcdxxb,2011,(08):724.[doi:doi:10.3969/j.issn.1006-7043.2011.06.006]
[2]张帅,朱锡,侯海量.船舶螺旋桨流固耦合稳态求解算法[J].哈尔滨工程大学学报,2012,(05):615.[doi:10.3969/j.issn.1007-7043.201109025]
 ZHANG Shuai,ZHU Xi,HOU Hailiang.Computation algorithm of fluid-structure interaction of marine propellers in steady state[J].hebgcdxxb,2012,(08):615.[doi:10.3969/j.issn.1007-7043.201109025]
[3]姚熊亮,吴巧瑞,张忠宇,等.可压缩射流冲击板结构的流固耦合动力学分析[J].哈尔滨工程大学学报,2012,(05):665.[doi:10.3969/j.issn.1006-7043. 201105091]
 YAO Xiongliang,WU Qiaorui,ZHANG Zhongyu,et al.Fluid-solid coupled dynamic analysis of compressive jet impact onto panels[J].hebgcdxxb,2012,(08):665.[doi:10.3969/j.issn.1006-7043. 201105091]
[4]朱艳,郭百森,魏海鹏,等.自由面对冲击波作用下的圆柱瞬态响应的影响[J].哈尔滨工程大学学报,2012,(07):801.[doi:10.3969/j.issn.1006-7043.201108021]
 ZHU Yan,GUO Baisen,WEI Haipeng,et al.Influence of a free surface on the cylinder transient responseunder the action of an underwater shock[J].hebgcdxxb,2012,(08):801.[doi:10.3969/j.issn.1006-7043.201108021]
[5]秦伟,康庄,宋儒鑫,等.深水钢悬链立管的双向涡致疲劳损伤时域模型[J].哈尔滨工程大学学报,2013,(01):26.[doi:10.3969/j.issn.1006-7043.201205022]
 QIN Wei,KANG Zhuang,SONG Ruxin,et al.Research on a time domain model for vortex induced fatigue damage in two-degree-of-freedom of deepwater steel catenary riser[J].hebgcdxxb,2013,(08):26.[doi:10.3969/j.issn.1006-7043.201205022]
[6]孙海涛,熊鹰.考虑变形的螺旋桨水动力及变形特性研究[J].哈尔滨工程大学学报,2013,(09):1108.[doi:10.3969/j.issn.10067043. 201209024]
[7]任慧龙,于鹏垚,李辉,等.船体三维变形响应的数值预报[J].哈尔滨工程大学学报,2015,(01):134.[doi:10.3969/j.issn.1006-7043.201311053]
 REN Huilong,YU Pengyao,LI Hui,et al.Numerical prediction of three dimensional deformation response of the ship hull[J].hebgcdxxb,2015,(08):134.[doi:10.3969/j.issn.1006-7043.201311053]
[8]王秀礼,卢永刚,袁寿其,等.基于流固耦合的核主泵汽蚀动力特性研究[J].哈尔滨工程大学学报,2015,(02):213.[doi:10.3969/j.issn.1006-7043.201302014]
 WANG Xiuli,LU Yonggang,YUAN Shouqi,et al.Dynamic characteristics analysis of the reactor coolant pump variation based on fluid-structure coupling[J].hebgcdxxb,2015,(08):213.[doi:10.3969/j.issn.1006-7043.201302014]
[9]郭春雨,李夏炎,王帅,等.冰区航行船舶碎冰阻力预报数值模拟方法[J].哈尔滨工程大学学报,2016,37(02):145.[doi:10.11990/jheu.201507064]
 GUO Chunyu,LI Xiayan,WANG Shuai,et al.A numerical simulation method for resistance prediction of ship in pack ice[J].hebgcdxxb,2016,37(08):145.[doi:10.11990/jheu.201507064]
[10]牟介刚,陈莹,谷云庆,等.悬臂式离心泵流固耦合特性研究[J].哈尔滨工程大学学报,2016,37(08):1111.[doi:10.11990/jheu.201506030]
 MOU Jiegang,CHEN Ying,GU Yunqing,et al.Research on fluid-structure interaction characteristics of cantilever centrifugal pump[J].hebgcdxxb,2016,37(08):1111.[doi:10.11990/jheu.201506030]
[11]李裕龙,廖洪烈,胡湛,等.非匹配网格的三维流固耦合问题[J].哈尔滨工程大学学报,2019,40(04):683.[doi:10.11990/jheu.201709125]
 LI Yulong,LIAO Honglie,HU Zhan,et al.3D partitioned fluid-structure analysis based on non-matching meshes[J].hebgcdxxb,2019,40(08):683.[doi:10.11990/jheu.201709125]

备注/Memo

备注/Memo:
收稿日期:2017-9-30。
基金项目:国家重点研发项目(2016YFC0402601);国家自然科学基金项目(51609269).
作者简介:李裕龙,男,副研究员;廖洪烈,男,工程师;罗向欣,男,博士,讲师.
通讯作者:罗向欣,E-mail:luoxx6@mail.sysu.edu.cn.
更新日期/Last Update: 2019-08-05