[1]李由,孙兆伟,叶东.鲁棒PD+卫星姿态快速机动控制器设计[J].哈尔滨工程大学学报,2019,40(04):703-709.[doi:10.11990/jheu.201709130]
 LI You,SUN Zhaowei,YE Dong.Robust PD+ controller for satellite attitude fast maneuvering[J].hebgcdxxb,2019,40(04):703-709.[doi:10.11990/jheu.201709130]
点击复制

鲁棒PD+卫星姿态快速机动控制器设计(/HTML)
分享到:

《哈尔滨工程大学学报》[ISSN:1006-6977/CN:61-1281/TN]

卷:
40
期数:
2019年04期
页码:
703-709
栏目:
出版日期:
2019-04-05

文章信息/Info

Title:
Robust PD+ controller for satellite attitude fast maneuvering
作者:
李由1 孙兆伟2 叶东2
1. 西安电子科技大学 空间科学与技术学院, 陕西 西安 710126;
2. 哈尔滨工业大学 航天学院, 黑龙江 哈尔滨 150001
Author(s):
LI You1 SUN Zhaowei2 YE Dong2
1. School of Aerospace Science and Technology, Xidian University, Xi’an 710126, China;
2. School of Astronautics, Harbin Institute of Technology, Harbin 150001, China
关键词:
姿态控制姿态快速机动PD+鲁棒控制时间较优输出力矩受限角速度受限Lyapunov方法
分类号:
V448.22
DOI:
10.11990/jheu.201709130
文献标志码:
A
摘要:
针对控制力矩与角速度受限情形下的卫星姿态快速机动的控制问题,本文对传统PD控制器进行了改进,采用姿态机动的匀速与减速运动过程的方法大幅度提升系统收敛速率,设计PD+控制器使得系统状态能够沿着期望的滑模面进行运动,并通过构造Lyapunov函数对其进行证明,从而实现对PD控制器收敛时间的估计,并实现40%以上的系统收敛时间提升。在存在转动惯量不确定性与外部干扰力矩的情形下设计PD+控制器实现对于未知扰动的抑制。同时考虑到卫星正常运行对于姿态角速度与控制力矩的限制,证明了姿态控制参数与角速度范数之间的关系,给出了控制力矩与角速度受限情形下的控制律。最后通过数值仿真验证本文提出控制算法的有效性。

参考文献/References:

[1] WIE B, BARBA P M. Quaternion feedback for spacecraft large angle maneuvers[J]. Journal of guidance, control, and dynamics, 1985, 8(3):360-365.
[2] WIE B, WEISS H, ARAPOSTATHIS A. Quarternion feedback regulator for spacecraft eigenaxis rotations[J]. Journal of guidance, control, and dynamics, 1989, 12(3):375-380.
[3] FORBES J R. Passivity-based attitude control on the special orthogonal group of rigid-body rotations[J]. Journal of guidance, control, and dynamics, 2013, 36(6):1596-1605.
[4] VERBIN D, LAPPAS V J. Rapid rotational maneuvering of rigid satellites with hybrid actuators configuration[J]. Journal of guidance, control, and dynamics, 2013, 36(2):532-547.
[5] VERBIN D, LAPPAS V J. Rapid rotational maneuvering of rigid satellites with reaction wheels[J]. Journal of guidance, control, and dynamics, 2013, 36(5):1538-1544.
[6] VERBIN D, LAPPAS V J, BEN-ASHER J Z. Time-efficient angular steering laws for rigid satellite[J]. Journal of guidance, control, and dynamics, 2011, 34(3):878-892.
[7] CAO Xibin, YUE Chengfei, LIU Ming, et al. Time efficient spacecraft maneuver using constrained torque distribution[J]. Acta astronautica, 2016, 123:320-329.
[8] HU Qinglei. Robust adaptive backstepping attitude and vibration control with L2-gain performance for flexible spacecraft under angular velocity constraint[J]. Journal of sound and vibration, 2009, 327(3/4/5):285-298.
[9] HU Qinglei, LI Bo, ZHANG Youmin. Robust attitude control design for spacecraft under assigned velocity and control constraints[J]. ISA transactions, 2013, 52(4):480-493.
[10] BOSKOVIC J D, LI Saiming, MEHRA R K. Robust tracking control design for spacecraft under control input saturation[J]. Journal of guidance, control, and dynamics, 2004, 27(4):627-633.
[11] 宿敬亚, 樊鹏辉, 蔡开元. 四旋翼飞行器的非线性PID姿态控制[J]. 北京航空航天大学学报, 2011, 37(9):1054-1058.SU Jingya, FAN Penghui, CAI Kaiyuan. Attitude control of quadrotor aircraft via nonlinear PID[J]. Journal of Beijing University of Aeronautics and Astronautics, 2011, 37(9):1054-1058.
[12] 李玥, 孙健国. 基于遗传算法的航空发动机多目标优化PID控制[J]. 航空动力学报, 2008, 23(1):174-178.LI Yue, SUN Jianguo. Multi-objective optimization of aeroengine PID control based on multi-objective genetic algorithms[J]. Journal of aerospace power, 2008, 23(1):174-178.
[13] SAKAMOTO T, KATAYAMA H, ICHIKAWA A. Attitude control of a helicopter model by robust PID controllers[C]//Proceedings of 2006 IEEE Conference on Computer Aided Control System Design, 2006 IEEE International Conference on Control Applications, 2006 IEEE International Symposium on Intelligent Control. Munich, Germany, 2006.
[14] ZHANG Le, BI Shaojie, YANG Hong. Fuzzy-PID control algorithm of the helicopter model flight attitude control[C]//2010 Chinese Control and Decision Conference. Xuzhou, China, 2010.
[15] WU Shunan, RADICE G, SUN Zhaowei. Robust finite-time control for flexible spacecraft attitude maneuver[J]. Journal of aerospace engineering, 2014, 27(1):185-190.
[16] ZHANG Le, BI Shaojie, YANG Hong. Fuzzy-PID control algorithm of the helicopter model flight attitude control[C]//2010 Chinese Control and Decision Conference. Xuzhou, China, 2010.
[17] LI You, YE Dong, SUN Zhaowei. Robust finite time control algorithm for satellite attitude control[J]. Aerospace science and technology, 2017, 68:46-57.
[18] LI You, SUN Zhaowei, YE Dong. Time efficient robust PID plus controller for satellite attitude stabilization control considering angular velocity and control torque constraint[J]. Journal of aerospace engineering, 2017, 30(5):04017030, doi:10.1061/(ASCE)AS.1943-5525.0000743.
[19] LI You, YE Dong, SUN Zhaowei. Time efficient sliding mode controller based on Bang-Bang logic for satellite attitude control[J]. Aerospace science and technology, 2018, 75:342-352.

相似文献/References:

[1]王剑颖,梁海朝,吴限德,等.高超声速飞行器连续终端滑模姿态控制方法[J].哈尔滨工程大学学报,2016,37(02):187.[doi:10.11990/jheu.201411049]
 WANG Jianying,LIANG Haizhao,WU Xiande,et al.Continuous terminal sliding mode attitude control for hypersonic aircrafts[J].hebgcdxxb,2016,37(04):187.[doi:10.11990/jheu.201411049]
[2]刘锦涛,吴文海,张源原,等.基于视觉的无人机鲁棒tau控制方法研究[J].哈尔滨工程大学学报,2016,37(02):192.[doi:10.11990/jheu.201509067]
 LIU Jintao,WU Wenhai,ZHANG Yuanyuan,et al.Robust vision-based tau control method for unmanned aerial vehicles[J].hebgcdxxb,2016,37(04):192.[doi:10.11990/jheu.201509067]

备注/Memo

备注/Memo:
收稿日期:2017-09-30。
基金项目:国家自然科学基金项目(61603115,91638301);中国博士后科学基金项目(2015M81455).
作者简介:李由,男,讲师,博士.
通讯作者:李由,E-mail:liyouhahaha@163.com
更新日期/Last Update: 2019-04-03