[1]易文彬,王永生,刘承江,等.喷水推进三体船推力减额计算及分析[J].哈尔滨工程大学学报,2019,40(03):572-578.[doi:10.11990/jheu.201710063]
 YI Wenbin,WANG Yongsheng,LIU Chengjiang,et al.Computation and analysis of thrust deduction fraction of waterjet propelled trimaran[J].hebgcdxxb,2019,40(03):572-578.[doi:10.11990/jheu.201710063]
点击复制

喷水推进三体船推力减额计算及分析(/HTML)
分享到:

《哈尔滨工程大学学报》[ISSN:1006-6977/CN:61-1281/TN]

卷:
40
期数:
2019年03期
页码:
572-578
栏目:
出版日期:
2019-03-05

文章信息/Info

Title:
Computation and analysis of thrust deduction fraction of waterjet propelled trimaran
作者:
易文彬1 王永生2 刘承江2 彭云龙3
1. 海军工程大学 基础部, 湖北 武汉 430033;
2. 海军工程大学 动力工程学院, 湖北 武汉 430033;
3. 92728部队, 上海 200436
Author(s):
YI Wenbin1 WANG Yongsheng2 LIU Chengjiang2 PENG Yunlong3
1. Basic Department, Naval University of Engineering, Wuhan 430033, China;
2. College of Marine Power Engineering, Naval University of Engineering, Wuhan 430033, China;
3. Unit 92728, People’s Liberation Army, Shanghai 200436, China
关键词:
喷水推进三体船推力减额数值模拟阻力增额动量减额
分类号:
U661.1
DOI:
10.11990/jheu.201710063
文献标志码:
A
摘要:
为分析喷水推进船推力减额在不同航速下的变化规律,基于非定常雷诺时均方程及VOF模型求解船舶粘性流场,考虑船模纵倾角及升沉变化,采用体积力的方法代替泵的作用,数值模拟了三体船模喷水推进自航。自航时船模纵倾角及吃水增加,阻力增额恒为正值,动量减额恒为负值。三体船在较低航速时有较大的推力减额,随着航速提高推力减额变为负值。动量减额是高航速时推力减额为负的主要原因。低航速时艉板浸没在水中,喷口在水面以下喷射水流,此时有较大的正阻力增额和较大的负动量减额,喷水推进器流道及喷口的安装使船体几何面积有较大减小导致静压阻力增加,是低速时阻力增额的主要原因。高速时艉板由湿变干,喷口在水面以上喷射水流,阻力增额及动量减额的绝对值减小,船模姿态变化是高速时阻力增额的主要原因。随着航速的提高,出口阻力不断增大,构成了动量减额的主要成分。

参考文献/References:

[1] VAN T T. The effect of waterjet-hull interaction on thrust and propulsive efficiency[C]//Proceedings of the International Conference on Fast Sea Transportation, FAST’ 91. Trondheim, Norway, 1991:1149-1167.
[2] COOP H G. Investigation of hull-waterjet interaction effects[D]. University of Canterbury,1995.
[3] VAN T T. Waterjet-hull interaction[D]. Delft:Delft University of Technology, 1996.
[4] ALEXANDER K, COOP H, VAN T T. Waterjet-hull interaction:recent experimental results[J]. SNAME transactions, 1994, 102:87-105.
[5] VAN T T. Report of the specialist committee on validation of waterjet test procedures to the 24th ITTC[C]//The 24th International Towing Tank Conference. Edinburgh,UK:ITTC,2005.
[6] CUSANELLI D S,CARPENTERER S A. Axial waterjet(AxWJ) model 5662:Hull resistance and model-scale powering with LDV nozzle design[R]. West Bethesda:NSWC,2007.
[7] PAUL R. Waterjet Self-propulsion model test for application to a high-speed sealift ship[R]. American:California State University, 2007.
[8] KANDASAMY M, GEORGIEV S, GEORGIEV E, et al. Numerical and experimental evaluation of waterjet propelled Delft catamarans[C]//Proceedings of the 11th International Conference on Fast Sea Transportation. Honolulu, Hawaii, USA, 2011:847-850.
[9] ESLAMDOOST A. The hydrodynamics of waterjet/hull interaction[D]. Gothenburg, Sweden:Department of Shipping and Marine Technology, Chalmers University of Technology, 2014.
[10] 孙存楼, 王永生, 徐文珊. 喷水推进船负推力减额机理研究[J]. 水动力学研究与进展, 2011, 26(2):177-185.SUN Cunlou, WANG Yongsheng, XU Wenshan. Mechanism of negative thrust deduction factor of waterjet hull[J]. Chinese journal of hydrodynamics, 2011, 26(2):177-185.
[11] 郭春雨, 龚杰, 李茂华, 等. ITTC规程下喷水推进三体船自航试验研究进展[J]. 船海工程, 2014, 43(6):15-18, 24.GUO Chunyu, GONG Jie, LI Maohua, et al. Development of propulsion test for trimaran with waterjets following the ITTC procedure[J]. Ship & ocean engineering, 2014, 43(6):15-18, 24.
[12] 蔡佑林, 沈兴荣, 孙群. 喷水推进船航速预报的动量通量试验技术发展现状[J]. 中国造船, 2015, 56(2):131-141.CAI Youlin, SHEN Xingrong, SUN Qun. Developing status of water-jet ship velocity prediction based on momentum flux test technology[J]. Shipbuilding of China, 2015, 56(2):131-141.
[13] DYNE G, KRUPPA C, LAMBERTI B, et al. The specialist committee on validation of waterjet test procedures final report and recommendation to the 21st ITTC[C]//21st ITTC. Trondheim Norway, 1996.
[14] 易文彬, 王永生, 彭云龙, 等. 考虑航行姿态的船模阻力及流场数值预报[J]. 海军工程大学学报, 2016, 28(5):26-30.YI Wenbin, WANG Yongsheng, PENG Yunlong, et al. Resistance and flow field prediction of ship model with consideration of voyage attitude[J]. Journal of Naval University of Engineering, 2016, 28(5):26-30.

相似文献/References:

[1]丁江明,王永生.喷水推进器推进性能曲线的两种表示方法[J].哈尔滨工程大学学报,2010,(01):20.[doi:1006-7043.2010.01.004]
 DING Jiang ming,WANG Yong sheng.Two methods for expressing the propulsive performance curves of marine waterjets[J].hebgcdxxb,2010,(03):20.[doi:1006-7043.2010.01.004]
[2]黄德波,张雨新,邓锐,等.单体与三体高速船舶粘性流场数值模拟[J].哈尔滨工程大学学报,2010,(06):0.
 HUANG De bo,ZHANG Yu xin,DENG Rui,et al.Numerical simulation of viscous flow around high speed monohull and trimaran ships[J].hebgcdxxb,2010,(03):0.
[3]丁江明,王永生.喷水推进器进水流道参数化设计方法[J].哈尔滨工程大学学报,2011,(04):423.[doi:doi:10.3969/j.issn.1006-7043.2011.04.005]
 DING Jiangming,WANG Yongsheng.Research on the parametric design of an inlet duct found in a marine waterjet[J].hebgcdxxb,2011,(03):423.[doi:doi:10.3969/j.issn.1006-7043.2011.04.005]
[4]常书平,王永生,丁江明,等.混流式喷水推进泵水力设计和性能预报[J].哈尔滨工程大学学报,2011,(06):708.[doi:doi:10.3969/j.issn.1006-7043.2011.06.003]
 CHANG Shuping,WANG Yongsheng,DING Jiangming,et al.Hydraulic design and performance predictions of a waterjet mixedflow pump[J].hebgcdxxb,2011,(03):708.[doi:doi:10.3969/j.issn.1006-7043.2011.06.003]
[5]孙存楼,王永生,黄斌.船舶喷水推进器特殊工况性能研究[J].哈尔滨工程大学学报,2011,(07):867.[doi:doi:10.3969/j.issn.1007-7043.2011.07.006]
 SUN Cunlou,WANG Yongsheng,HUANG Bin.Research on waterjet performance in special work conditions[J].hebgcdxxb,2011,(03):867.[doi:doi:10.3969/j.issn.1007-7043.2011.07.006]
[6]胡开业,卢友敏,丁勇.NURBS方法的深V型三体船稳性[J].哈尔滨工程大学学报,2011,(10):1273.[doi:doi:10.3969/j.issn.1006-7043.2011.10.002]
 HU Kaiye,LU Youmin,DING Yong.Research on deep-vee trimaran stability based on the non-uniform rational B-spline method[J].hebgcdxxb,2011,(03):1273.[doi:doi:10.3969/j.issn.1006-7043.2011.10.002]
[7]常书平,王永生,靳栓宝.轴流式喷水推进泵水力设计和性能检验[J].哈尔滨工程大学学报,2011,(10):1278.[doi:doi:10.3969/j.issn.1006-7043.2011.10.003]
 CHANG Shuping,WANG Yongsheng,JIN Shuanbao.Hydraulic design and performance investigation of a waterjet axial-flow pump[J].hebgcdxxb,2011,(03):1278.[doi:doi:10.3969/j.issn.1006-7043.2011.10.003]
[8]詹金林,卢晓平,李光磊.三体船操纵性水动力的势流理论计算[J].哈尔滨工程大学学报,2012,(05):642.[doi:10.3969/j.issn.1006-7043. 201106049]
 ZHAN Jinlin,LU Xiaoping,LI Guanglei.Calculation of trimaran’s maneuverability hydrodynamics by the potential flow theory[J].hebgcdxxb,2012,(03):642.[doi:10.3969/j.issn.1006-7043. 201106049]
[9]常书平,王永生,丁江明,等.混流式喷水推进器的性能试验与数值计算[J].哈尔滨工程大学学报,2012,(05):660.[doi:10.3969/j.issn.1007-7043. 201110001]
 CHANG Shuping,WANG Yongsheng,DING Jiangming,et al.Performance test and numerical calculation of a mixed-flow waterjet[J].hebgcdxxb,2012,(03):660.[doi:10.3969/j.issn.1007-7043. 201110001]
[10]靳栓宝,王永生,丁江明,等.混流式喷水推进泵三元设计及数值试验[J].哈尔滨工程大学学报,2012,(10):1223.[doi:10.3969/j.issn.1006-7043.201111025]
 JIN Shuanbao,WANG Yongsheng,DING Jiangming,et al.Three-dimensional design and numerical experiment of mixed-flow waterjet with CFD[J].hebgcdxxb,2012,(03):1223.[doi:10.3969/j.issn.1006-7043.201111025]

备注/Memo

备注/Memo:
收稿日期:2017-10-31。
基金项目:国家自然科学基金项目(51209212).
作者简介:易文彬,男,博士研究生;王永生,男,教授,博士生导师.
通讯作者:易文彬,E-mail:yiwenbinhjgc@163.com.
更新日期/Last Update: 2019-04-04