[1]李相泽,蒲宝明,杨东升,等.基于手机内置多传感器的瞬时心率估计[J].哈尔滨工程大学学报,2018,39(04):730-735.[doi:10.11990/jheu.201711012]
 LI Xiangze,PU Baoming,YANG Dongsheng,et al.Instantaneous heart rate estimation based on the built-in multisensor of an Android smartphone[J].hebgcdxxb,2018,39(04):730-735.[doi:10.11990/jheu.201711012]
点击复制

基于手机内置多传感器的瞬时心率估计(/HTML)
分享到:

《哈尔滨工程大学学报》[ISSN:1006-6977/CN:61-1281/TN]

卷:
39
期数:
2018年04期
页码:
730-735
栏目:
出版日期:
2018-04-05

文章信息/Info

Title:
Instantaneous heart rate estimation based on the built-in multisensor of an Android smartphone
作者:
李相泽1 蒲宝明12 杨东升2 于旭蕾3 王帅2
1. 东北大学 计算机科学与工程学院, 辽宁 沈阳 110819;
2. 中国科学院 沈阳计算技术研究所, 辽宁 沈阳 110168;
3. 沈阳工学院 信息与控制学院, 辽宁 沈阳 113122
Author(s):
LI Xiangze1 PU Baoming12 YANG Dongsheng2 YU Xulei3 WANG Shuai2
1. School of Computer Science and Engineering, Northeastern University, Shenyang 110819, China;
2. Shenyang Institute of Computing Technology, Chinese Academy of Sciences, Shenyang 110168, China;
3. School of Information Technology, Shenyang Institute of Technology, Shenyang 113122, China
关键词:
安卓摄像头传感器加速度传感器脉搏波信号呼吸波信号瞬时心率估计智能手机
分类号:
TP311
DOI:
10.11990/jheu.201711012
文献标志码:
A
摘要:
针对仅使用智能手机摄像头提取脉搏信号很难进行瞬时心率估计的问题,本文提出一种融合摄像头传感器与加速度传感器的瞬时心率估计方法(instantaneous heart rate estimation,IHRE)。该方法通过手机摄像头采集人体体表光电容积脉搏波信号(photoplethysmography,PPG),通过手机内置的加速度传感器计算人体腹部呼吸信号。将呼吸信号作为载波信号,采用变频复解调方法(variable frequency complex demodulation,VFCDM)解调PPG信号,得到瞬时心率信号。实验结果表明:以传统ECG方法为基准,IHRE方法比传统短时自相关方法(short-term autocorrelation,STA)有效率误差降低14.3%,而准确率提高11.5%。因此,IHRE方法可以在Android智能手机上实现有效和准确地的瞬时心率估计。

参考文献/References:

[1] ZHANG Zhilin. Photoplethysmography-based heart rate monitoring in physical activities via joint sparse spectrum reconstruction[J]. IEEE transactions on biomedical engineering, 2015, 62(8):1902-1910.
[2] COUCEIRO R, CARVALHO P, PAIVA R P, et al. Real-time prediction of neurally mediated syncope[J]. IEEE journal of biomedical and health informatics, 2016, 20(2):508-520.
[3] SCULLY C G, LEE J, MEYER J, et al. Physiological parameter monitoring from optical recordings with a mobile phone[J]. IEEE transactions on biomedical engineering, 2012, 59(2):303-306.
[4] JUNIOR A D, MURALI S, RINCON F, et al. Methods for reliable estimation of pulse transit time and blood pressure variations using smartphone sensors[J]. Microprocessors and microsystems, 2016, 46:84-95.
[5] ESTRADA L, TORRES A, SARLABOUS L, et al. Respiratory signal derived from the smartphone built-in accelerometer during a respiratory load protocol[C]//Proceedings of the 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Milan, Italy:IEEE, 2015:6768-6771.
[6] NAM Y, LEE J, CHON K H. Respiratory rate estimation from the built-in cameras of smartphones and tablets[J]. Annals of biomedical engineering, 2014, 42(4):885-898.
[7] LIU He, IVANOV K, WANG Yadong, et al. Toward a smartphone application for estimation of pulse transit time[J]. Sensors, 2015, 15(10):27303-27321.
[8] SEJDIC E, MILLECAMPS A, TEOLI J, et al. Assessing interactions among multiple physiological systems during walking outside a laboratory:an Android based gait monitor[J]. Computer methods and programs in biomedicine, 2015, 122(3):450-461.
[9] DRUGMAN T, STYLIANOU Y. Fast inter-harmonic reconstruction for spectral envelope estimation in high-pitched voices[J]. IEEE signal processing letters, 2014, 21(11):1418-1422.
[10] LÁZARO J, NAM Y Y, GIL E, et al. Respiratory rate derived from smartphone-camera-acquired pulse photoplethysmographic signals[J]. Physiological measurement, 2015, 36(11) 2317-2333.
[11] WANG Hengliang, SIU K, JU K, et al. A high resolution approach to estimating time-frequency spectra and their amplitudes[J]. Annals of biomedical engineering. 2006, 34(2):326-338.
[12] TARASSENKO L, VILLARROEL M, GUAZZI A, et al. Non-contact video-based vital sign monitoring using ambient light and auto-regressive models[J]. Physiological measurement, 2014, 35(5):807-831.
[13] NAKANO M, KONISHI T, IZUMI S, et al. Instantaneous heart rate detection using short-time autocorrelation for wearable healthcare systems[C]//Proceedings of 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society. San Diego, California, USA:IEEE, 2012:6703-6706.
[14] XIONG Jiping, CAI Lisang, WANG Fei, et al. SVM-based spectral analysis for heart rate from multi-channel WPPG sensor signals[J]. Sensors, 2017, 17(3):506.
[15] YE Yalan, CHENG Yunfei, HE Wenwen, et al. Combining nonlinear adaptive filtering and signal decomposition for motion artifact removal in wearable photoplethysmography[J]. IEEE sensors journal, 2016, 16(19):7133-7141.

相似文献/References:

[1]孙宇嘉,王晓鸣,贾方秀,等.封锁雷智能防排系统[J].哈尔滨工程大学学报,2014,(05):580.[doi:10.3969/j.issn.10067043.201303071]
 SUN Yujia,WANG Xiaoming,JIA Fangxiu,et al.An intelligent anti removal system for blockage mines[J].hebgcdxxb,2014,(04):580.[doi:10.3969/j.issn.10067043.201303071]

备注/Memo

备注/Memo:
收稿日期:2017-11-06。
基金项目:国家科技重大专项资助项目(2013ZX04007031,2012ZX01029001-002).
作者简介:李相泽(1983-),男,讲师,博士研究生;蒲宝明(1959-),男,教授,博士生导师.
通讯作者:李相泽,E-mail:530955128@qq.com
更新日期/Last Update: 2018-04-11