[1]张旋,慕建君,焦晓鹏.面向MLC闪存的比特翻转译码算法研究[J].哈尔滨工程大学学报,2019,40(02):331-337.[doi:10.11990/jheu.201711107]
 ZHANG Xuan,MU Jianjun,JIAO Xiaopeng.Improved bit-flipping decoding algorithm for MLC flash memory[J].hebgcdxxb,2019,40(02):331-337.[doi:10.11990/jheu.201711107]
点击复制

面向MLC闪存的比特翻转译码算法研究(/HTML)
分享到:

《哈尔滨工程大学学报》[ISSN:1006-6977/CN:61-1281/TN]

卷:
40
期数:
2019年02期
页码:
331-337
栏目:
出版日期:
2019-02-05

文章信息/Info

Title:
Improved bit-flipping decoding algorithm for MLC flash memory
作者:
张旋12 慕建君1 焦晓鹏1
1. 西安电子科技大学 计算机学院, 陕西 西安 710071;
2. 西安理工大学 高等技术学院, 陕西 西安 710048
Author(s):
ZHANG Xuan12 MU Jianjun1 JIAO Xiaopeng1
1. School of Computer Science and Technology, Xidian University, Xi’an 710071, China;
2. Faculty of Higher Vacational and Technical Education, Xi’an University of Technology, Xi’an 710048, China
关键词:
闪存多级单元单元间干扰蒙特卡罗仿真低密度奇偶校验码比特翻转译码
分类号:
TP301.6;TN911.22
DOI:
10.11990/jheu.201711107
文献标志码:
A
摘要:
针对寄生耦合电容效应导致闪存相邻多级单元(multi-level-cell,MLC)的阈值电压失真而产生的存储数据错误问题,本文提出了一种适用于MLC闪存系统的改进比特翻转译码算法。在分析MLC闪存发生错误原因的基础上,利用蒙特卡罗仿真方法计算相邻MLC闪存阈值电压分布的重叠区域来确定阈值电压对应存储比特的可靠性,借助存储比特的可靠性度量设计了MLC闪存的比特翻转规则。仿真结果表明,耦合强度系数s=1.8与感知精度分别为p=3和p=4时,相比于原有MLC闪存比特翻转译码算法,所提出MLC闪存比特翻转译码算法的译码性能提升了81%和91%,并且译码的平均迭代次数减少了9.8%和21%。

参考文献/References:

[1] TAKEUCHI K. NAND flash application and solution[J]. IEEE solid-state circuits magazine, 2013, 5(4):34-40. DOI:10.1109/MSSC.2013.2278087.
[2] DEAN K. The history of semiconductor memory:from magnetic tape to NAND flash memory[J]. IEEE solid-state circuits magazine, 2016, 8(2):16-22. DOI:10.1109/MSSC. 2016.2548422.
[3] LIU R, CHUANG M, YANG C, et al. Improving read performance of NAND flash SSDs by exploiting error locality[J]. IEEE transactions on computers, 2016, 64(4):1090-1102. DOI:10.1109/TC.2014.2345387.
[4] CAI Y, Haratsch E, MUTLU O, et al. Threshold voltage distribution in MLC flash memory:characterization, analysis, and modeling[C]//Proceedings of the Conference on Design, Automation and Test in Europe, Grenoble, France, 2013:1285-1290. DOI:10.7873/DATE.2013.266.
[5] SALA F, IMMINK K, DOLECEK L. Error control schemes for modern flash memories solutions for flash deficiencies[J]. IEEE consumer electronics magazine, 2015, 4(1):66-73. DOI:10.1109/MCE.2014.2360965.
[6] DONG G, LI S, ZHANG T. Using data postcompensation and predistortion to tolerate cell-to-cell interference in MLC NAND flash memory[J]. IEEE transactions on circuits and systems I:regular papers, 2010, 57(10):2718-2728. DOI:10.1109/TCSI.2010.2046966.
[7] CHAUDHRY A, GUAN Y, CAI K. Detector for MLC NAND flash memory using neighbor-a-priori information[J]. IEEE transactions on very large scale integration (VLSI) systems, 2016, 24(9):2827-2836. DOI:10.1109/TVLSI.2016.2523759.
[8] MICHELONI R, MARELLI A, RAVASIO R. Error correction codes for non-volatile memories[M]. Germany:springer, 2008:85-101.
[9] SUN H, ZHAO W, LV M, et al. Exploiting intracell bit-error characteristics to improve min-sum LDPC decoding for MLC NAND flash-based storage in mobile device[J]. IEEE transactions on very large scale integration (VLSI) sys-tems, 2016:24(8), 2654-2664. DOI:10.1109/TVLSI. 2016. 2535224.
[10] DONG G, XIE N, ZHANG T. On the use of soft-decision error-correction codes in NAND flash memories[J]. IEEE transactions on circuits and systems I:regular papers, 2011, 58(2):429-439. DOI:10.1109/TCSI.2013.2244361.
[11] HU Y, SONG S, XIAO S, et al. A dominating error region strategy for improving the bit-flipping LDPC decoder of SSDs[J]. IEEE transactions on circuits and systems Ⅱ:express briefs, 2015, 62(6):578-582. DOI:10.1109/TCSⅡ. 2015.2407732.
[12] PARNELL T, DVNNER C, MITTELHOLZER T, et al. Capacity of the MLC NAND flash channel[J]. IEEE journal on selected areas in communications, 2016, 34(9):2354-2365. DOI:10.1109/JSAC.2016.2603722.
[13] XU Q, GONG P, CHEN T, et al. Modelling and characterization of NAND flash memory channels[J]. Measurement, 2015, 70:225-231. DOI:10.1016/j. measurement.2015.04.003.
[14] CHAUDHRY A, GUAN Y, CAI K. Read and write voltage signal optimization for multi-level-cell (MLC) NAND flash memory[J]. IEEE transactions on communications, 2016, 64(4):1613-1623. DOI:10.1109/TCOMM.2016. 2533498.
[15] SUH K, SUH B, LIM Y, et al. A 3.3V 32Mb NAND flash memory with incremental step pulse programming scheme[J]. IEEE journal of solid-state circuits, 1995, 30(11):1149-1156. DOI:10.1109/ISSCC.1995.535460.
[16] PARK K, KANG M, KIM D, et al. A zeroing cell-to-cell interference page architecture with temporary LSB storing and parallel MSB program scheme for MLC NAND flash memories[J]. IEEE journal of solid-state circuits, 2008, 43(4):919-928. DOI:10.1109/JSSC.2008.917558.
[17] 张高远, 周亮, 文红. LDPC码加权比特翻转译码算法研究[J]. 电子与信息学报, 2014, 36(9):2093-2097. DOI:10.3724/SP.J.1146.2013.01622.ZHANG Gaoyuan, ZHOU Liang, and WEN Hong. Research on weighted bit-flipping decoding algorithm for LDPC codes[J]. Journal of electronics & information technology, 2014, 36(9):2093-2097. DOI:10.3724/SP.J. 1146.2013.01622.
[18] TOFAR C, YU T. Dynamic weighted bit-flipping decoding algorithms for LDPC codes[J]. IEEE transactions on communications, 2015, 63(11):3950-3963. DOI:10.1109/TCOMM.2015.2469780.

备注/Memo

备注/Memo:
收稿日期:2017-11-28。
基金项目:国家自然科学基金项目(61271004,61471286).
作者简介:张旋,男,讲师,博士研究生;慕建君,男,教授,博士生导师.
通讯作者:张旋,E-mail:lhzhangxuan@xaut.edu.cn
更新日期/Last Update: 2019-01-30