[1]叶金铭,于安斌,王友乾,等.桨后舵片空泡的分离涡模型模拟及实船舵空泡试验[J].哈尔滨工程大学学报,2019,40(05):913-919.[doi:10.11990/jheu.201712019]
 YE Jinming,YU Anbin,WANG Youqian,et al.Detached eddy simulation of sheet cavitation of rudder behind propeller and real ship rudder cavitation test[J].hebgcdxxb,2019,40(05):913-919.[doi:10.11990/jheu.201712019]
点击复制

桨后舵片空泡的分离涡模型模拟及实船舵空泡试验(/HTML)
分享到:

《哈尔滨工程大学学报》[ISSN:1006-6977/CN:61-1281/TN]

卷:
40
期数:
2019年05期
页码:
913-919
栏目:
出版日期:
2019-05-05

文章信息/Info

Title:
Detached eddy simulation of sheet cavitation of rudder behind propeller and real ship rudder cavitation test
作者:
叶金铭1 于安斌2 王友乾3 曹彦涛4 宋光照4
1. 海军工程大学 舰船与海洋学院, 湖北 武汉 430033;
2. 海军工程大学 振动与噪声研究所, 湖北 武汉 430033;
3. 海军上海地区装备修理监修室, 上海 200000;
4. 中国船舶科学研究中心 船舶振动噪声重点实验室, 江苏 无锡 214082
Author(s):
YE Jinming1 YU Anbin2 WANG Youqian3 CAO Yantao4 SONG Guangzhao4
1. Department of Naval Architecture, Naval University of Engineering, Wuhan 430033, China;
2. Institute of Noise & Vibration, Naval University of Engineering, Wuhan 430033, China;
3. Naval Shanghai Area Equipment Repair Room, Shanghai 200000, China;
4. National Key Laboratory on Ship Vibration and Noise, China Ship Scientific Research Center, Jiangsu 214082, China
关键词:
舵空泡船体计算流体力学螺旋桨普通舵分离涡模型实船试验水面舰船
分类号:
U661.4
DOI:
10.11990/jheu.201712019
文献标志码:
A
摘要:
为深入了解水面高速舰船的舵空化性能,本文采用计算流体力学(CFD)法对考虑船体影响的桨后舵片空泡进行计算,并在国内首次开展了实船舵空泡观测试验。通过对比确定了舵片空泡计算的分离涡模型,研究了螺旋桨和舵空泡发生的先后顺序、舵下端部的空化现象和舵空化的范围,并结合CFD计算和实船试验对不同航速、舵角的舵空泡进行研究,结果表明:在中低海况中的设计航速下,为保持航向航行,水面舰船普通舵表面会先于螺旋桨发生较为严重的片空化现象,且舵面空化范围主要集中在展向0.1L~0.6L位置;舵下端部和防腐蚀电极处则先于舵面发生空化。因此,水面高速舰船的普通舵易发生严重空化,而该研究可为研制具有良好抗空化性能的新型舵提供借鉴和参考。

参考文献/References:

[1] 陈建挺, 虞贲, 胡平. 4250 TEU集装箱船舵空泡试验研究[J]. 上海船舶运输科学研究所学报, 2008, 31(2):81-83. CHEN Jianting, YU Lai, HU Ping. An Experimental study of rudder cavitation for 4250 TEU container vessel[J]. Journal of Shanghai Scientific Research institute of shipping, 2008, 31(2):81-83.
[2] 黄昊. 民用船舶常规舵系设计的比较及分析[D]. 上海:上海交通大学, 2012:43-63. HUANG Hao. Comparison and analysis of conventional rudder design for civil ship[D]:Shanghai:Shanghai Jiao Tong University, 2012:43-63.
[3] 叶敏, 田严波, 胡方珍. 基于CFD方法的6500TEU集装箱船舵空泡腐蚀数值模拟研究[J]. 船舶工程, 2016, 38(S2):18-23. YE Min, TIAN Yanbo, HU Fangzhen. CFD-based numerical simulation of rudder cavitation erosion behavior for 6500 TEU container ship[J]. Ship engineering, 2016, 38(S2):18-23.
[4] 张继静. 高速船舵优化及操纵性研究[D]. 哈尔滨:哈尔滨工程大学, 2009:45-48. ZHANG Jijing. Study on optimization and maneuverability of rudder on high-speed-ship[D]. Harbin:Harbin Engineering University, 2009:45-48.
[5] KRASILNIKOV V I, BERG A, ?YE I J. Numerical prediction of sheet cavitation on rudder and podded propellers using potential and viscous flow solutions[C]//Proceedings of the 5th International Symposium on Cavitation. Osaka, Japan, 2003.
[6] LEE H, KINNAS S A, GU H, et al. Numerical modeling of rudder sheet cavitation including propeller/rudder interaction and the effects of a tunnel[C]//Proceedings of the 5th International Symposium on Cavitation. Osaka, Japan, 2003.
[7] BERGER S, SCHARF M, GÖTTSCHE U, et al. Numerical simulation of propeller-rudder interaction for non-cavitating and cavitating flows using different approaches[C]//Proceedings of the 4th International Symposium on Marine Propulsors. Texas, USA, 2015.
[8] SZANTYR J A. Dynamic interaction of the cavitating propeller tip vortex with the rudder[J]. Polish maritime research, 2007, 14(4):10-14.
[9] 叶金铭, 王威, 李渊, 等. 抗空化扭曲舵设计及力学特性分析[C]//2015年船舶水动力学学术会议论文集. 哈尔滨, 2015:328-335. YE Jinming, WANG Wei, LI Yuan, et al. The design and hydrodynamic analysis of anti-cavitation twisted rudder[C]//Proceedings of 2015 Symposium on Ship Hydrodynamics. Harbin, China, 2015:328-335.
[10] 叶金铭, 王威, 张凯奇, 等. 扭曲舵空化起始航速分析[J]. 哈尔滨工程大学学报, 2016, 37(12):1631-1637. YE Jinming, WANG Wei, ZHANG Kaiqi, et al. Analysis on the cavitation inception speed of a twisted rudder[J]. Journal of Harbin Engineering University, 2016, 37(12):1631-1637.
[11] 叶金铭, 王威, 于安斌, 等. 抗空化扭曲舵的设计及其水动力性能分析[J]. 上海交通大学学报, 2017, 51(3):314-319. YE Jinming, WANG Wei, YU Anbin, et al. Design and numerical analysis of hydrodynamic performance for anti-Cavitation twisted rudder[J]. Journal of Shanghai Jiao Tong University, 2017, 51(3):314-319.
[12] 叶金铭, 于安斌, 王威, 等. 桨后舵片空化的面元法数值计算方法[J]. 哈尔滨工程大学学报, 2017, 38(12):1844-1848. YE Jinming, YU Anbin, WANG Wei, et al. Numerical investigation of sheet cavitation of rudder behind propeller by surface-panel method[J]. Journal of Harbin Engineering University, 2017, 38(12):1844-1848.
[13] NISHIYAMA S. Experiment on rudder cavitation and its preventive measures[C]//Proceedings of the 14th International Towing Tank Conference. Ottawa, Canada, 1975:218-226.
[14] WILCOX D C. Turbulence modeling for CFD[M]. 2nd ed. La Canada, California:DCW Industries, 1998.
[15] WHITWORTH S. Cavitation prediction of flow over the delft twist 11 foil[C]//Proceedings of the 2nd International Symposium on Marine Propulsors. Hamburg, Germany, 2011.

相似文献/References:

[1]王军,郭君,孙丰,等.水下爆炸冲击波作用下船体刚体动态响应特性[J].哈尔滨工程大学学报,2014,(01):38.[doi:10.3969/j.issn.1006-7043.201306005]
 WANG Jun,GUO Jun,SUN Feng,et al.Dynamic response of the rigid ship’s hull subjected to underwater shock waves[J].hebgcdxxb,2014,(05):38.[doi:10.3969/j.issn.1006-7043.201306005]

备注/Memo

备注/Memo:
收稿日期:2017-12-7。
基金项目:国家自然科学基金项目(51579423).
作者简介:叶金铭,男,副教授;于安斌,男,博士研究生.
通讯作者:于安斌,E-mail:anbinyu2017@163.com
更新日期/Last Update: 2019-05-14