[1]孙敏,陈建恩,陈焕林.并联和串联非线性能量阱的吸振效能对比研究[J].哈尔滨工程大学学报,2018,39(10):1727-1732.[doi:10.11990/jheu.201712025]
 SUN Min,CHEN Jianen,CHEN Huanlin.Comparison on vibration absorption efficiency of parallel and series nonlinear energy sinks[J].hebgcdxxb,2018,39(10):1727-1732.[doi:10.11990/jheu.201712025]
点击复制

并联和串联非线性能量阱的吸振效能对比研究(/HTML)
分享到:

《哈尔滨工程大学学报》[ISSN:1006-6977/CN:61-1281/TN]

卷:
39
期数:
2018年10期
页码:
1727-1732
栏目:
出版日期:
2018-10-05

文章信息/Info

Title:
Comparison on vibration absorption efficiency of parallel and series nonlinear energy sinks
作者:
孙敏1 陈建恩23 陈焕林1
1. 天津城建大学 理学院, 天津 300384;
2. 天津理工大学 天津市先进机电系统设计与智能控制重点实验室, 天津 300384;
3. 天津理工大学 机电工程国家级实验教学示范中心, 天津 300384
Author(s):
SUN Min1 CHEN Jianen23 CHEN Huanlin1
1. School of Science, Tianjin Chengjian University, Tianjin 300384, China;
2. Tianjin Key Laboratory of the Design and Intelligent Control of the Advanced Mechatronical System, Tianjin University of Technology, Tianjin 300384, China;
3. National Demonstration Center for Experimental Mechanical and Electrical Engineering Education, Tianjin University of Technology, Tianjin 300384, China
关键词:
非线性能量阱能量耗散率冲击载荷吸振效能振动控制纯非线性参数优化动力学温度
分类号:
O322
DOI:
10.11990/jheu.201712025
文献标志码:
A
摘要:
针对并联和串联非线性能量阱的选用及优化问题,对比研究了两种能量阱的吸振效能。考虑温度对简支梁动态特性的影响,建立了含两种能量阱系统的动力学方程。利用数值方法获得了两种能量阱的能量耗散率,分析了刚度系数、阻尼系数和安装位置对吸振效能的影响。研究了两种能量阱的吸振效能随冲击幅值和温度的变化规律。研究结果显示,两种能量阱均可取得较好的减振效果,然而两者的参数设置原则存在较大差异。相对于并联非线性能量阱,随外部因素的变化,串联非线性能量阱的吸振效能变化幅度较大。

参考文献/References:

[1] GENDELMAN V. Transition of energy to a nonlinear localized mode in a highly asymmetric system of two oscillators[J]. Nonlinear dynamics, 2001, 25(1-3):237-253.
[2] GOURDON F, LAMARQUE C H, PERNOT S. Contribution to efficiency of irreversible passive energy pumping with a strong nonlinear attachment[J]. Nonlinear dynamics, 2007, 50(4):793-808.
[3] SAMANI F S, PELLICANO F. Vibration reduction on beams subjected to moving loads using linear and nonlinear dynamic absorbers[J]. Journal of sound and vibration, 2009, 325(4):742-754.
[4] TUMKUR R K R, DOMANY E, GENDELMAN O V, MASUD A, et al. Reduced-order model for laminar vortex-induced vibration of a rigid circular cylinder with an internal nonlinear absorber[J]. Communications in nonlinear science and numerical simulation, 2013, 18(7):1916-1930.
[5] LUO J, WIERSCHEM N E, FAHNESTOCK L A, et al. Realization of a strongly nonlinear vibration-mitigation device using elastomeric bumpers[J]. Journal of engineering mechanics, 2014, 140(5):04014009.
[6] 陈勇, 徐羿. 基于非线性能量吸振器的高耸结构减振分析[J]. 振动与冲击, 2014, 33(9):27-32.CHEN Yong, XU Yi. Vibration suppression analysis for a tall structure attached with a nonlinear energy sink absorber[J]. Journal of vibration and shock, 2014, 33(9):27-32.
[7] 刘中坡, 乌建中, 王菁菁,等. 轨道型非线性能量阱对高层结构脉动风振的控制仿真[J]. 振动工程学报, 2016, 29(6):1088-1096.LIU Zhongpo, Wu Jianzhong, Wang Jingjing, et al. Simulation of truck nonlinear energy sink for wind-induced vibration control in high-rise building[J]. Journal of vibration engineering, 2016, 29(6):1088-1096.
[8] GUO C Z, AL-SHUDEIFAT M A, VAKAKIS A F, et al. Vibration reduction in unbalanced hollow rotor systems with nonlinear energy sinks[J]. Nonlinear dynamics, 2015, 79(1):527-538.
[9] ZHANG Y W, ZHANG H, HOU S, et al. Vibration suppression of composite laminated plate with nonlinear energy sink[J]. Acta astronautica, 2016, 123:109-115.
[10] LEE Y S, VAKAKIS A F, BERGMAN L A, et al. Suppression of aeroelastic instability using broadband passive targeted energy transfers, part 1:theory[J]. AIAA journal, 2007, 45(3):693-711.
[11] YANG K, ZHANG Y W, DING H, et al. Nonlinear energy sink for whole-spacecraft vbration reduction[J]. Journal of vibration and acoustics 2017, 139(2):021011.
[12] VAURIGAUD B, SAVADKOOHI A T, LAMARQUE C H. Targeted energy transfer with parallel nonlinear energy sinks. Part I:Design theory and numerical results[J]. Nonlinear dynamics, 2011, 66(4):763-780.
[13] SAVADKOOHI A T, VAURIGAUD B, LAMARQUE C H. Targeted energy transfer with parallel nonlinear energy sinks. Part Ⅱ:theory and experiments[J]. Nonlinear dynamics, 2012, 67(1):37-46.
[14] NGUYEN T A, PERNOT S. Design criteria for optimally tuned nonlinear energy sinks-part 1:transient regime[J]. Nonlinear dynamics, 2012, 69(1/2):1-19.
[15] ZHANG Y W, ZHANG Z, CHEN L Q, et al. Impulse-induced Vibration Suppression of an Axially Moving Beam with Parallel Nonlinear Energy Sinks[J]. Nonlinear dynamics, 2015, 82(1/2):61-71.
[16] TSAKIRTZIS S, PANAGOPOULOS P N, KERSCHEN G, et al. Complex dynamics and targeted energy transfer in linear oscillators coupled to multi-degree-of-freedom essentially nonlinear attachments[J]. Nonlinear dynamics, 2007, 48(3):285-318.
[17] GENDELMAN O V, SAPSIS T, VAKAKIS A F. Enhance passive targeted energy transfer in strongly nonlinear mechanical oscillators[J]. Journal of sound and vibration, 2011, 330(1):1-8.
[18] GRINBERG I, LANTON V, GENDELMAN O V. Response regimes in linear oscillator with 2DOF nonlinear energy sink under periodic forcing[J]. Nonlinear dynamics, 2012, 69(4):1889-1902.
[19] GEORGIADES F, VAKAIS A F. Dynamics of a linear beam with an attached local nonlinear energy sink[J]. Communications in nonlinear science and numerical simulation, 2007, 12(5):643-651.

备注/Memo

备注/Memo:
收稿日期:2017-12-09。
基金项目:国家自然科学基金项目(11402165,11402170,11501406);天津市自然科学基金项目(17JCYBJC18800).
作者简介:孙敏(1983-),女,讲师,博士;陈建恩(1984-),男,讲师,博士.
通讯作者:陈建恩,E-mail:vchenje@163.com.
更新日期/Last Update: 2018-10-10