[1]余文林,柯世堂.风-雨荷载下大型冷却塔内压作用[J].哈尔滨工程大学学报,2019,40(05):926-931.[doi:10.11990/jheu.201712054]
 YU Wenlin,KE Shitang.Internal pressure effect of large cooling tower under wind-rain loads[J].hebgcdxxb,2019,40(05):926-931.[doi:10.11990/jheu.201712054]
点击复制

风-雨荷载下大型冷却塔内压作用(/HTML)
分享到:

《哈尔滨工程大学学报》[ISSN:1006-6977/CN:61-1281/TN]

卷:
40
期数:
2019年05期
页码:
926-931
栏目:
出版日期:
2019-05-05

文章信息/Info

Title:
Internal pressure effect of large cooling tower under wind-rain loads
作者:
余文林12 柯世堂1
1. 南京航空航天大学 土木工程系, 江苏 南京 210016;
2. 中国能源建设集团 江苏省电力设计院有限公司, 江苏 南京 211102
Author(s):
YU Wenlin12 KE Shitang1
1. Department of Civil Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China;
2. China Energy Engineering Group Jiangsu Power Design Institute Co., Ltd., Nanjing 211102, China
关键词:
冷却塔计算流体动力学风-雨耦合算法两相流模拟参数分析表面荷载内压作用气动力分布
分类号:
TU279.741
DOI:
10.11990/jheu.201712054
文献标志码:
A
摘要:
为了探讨暴风雨气候下降雨对大型冷却塔的影响,本文展开了风雨两相流模拟以及内表面气动力研究。以某210 m高超大型冷却塔为研究对象,以风-雨耦合算法为核心,基于计算流体动力学方法分别采用连续相和离散相计算模型展开风场和雨场的数值模拟。在此基础上,研究9种不同风速-雨强组合对塔筒内表面雨量、雨荷载和等效内压系数等的影响规律,揭示风-雨耦合作用下塔筒内部速度流线和雨滴轨迹的作用机理,最终提炼出最不利组合工况并分析其等效内压系数分布特性。研究表明:风-雨荷载下冷却塔塔顶内表面背风区的雨致压力系数不能忽略,最大数值可达0.003 8。结论可为此类冷却塔在极端天气下的内表面压力取值提供参考。

参考文献/References:

[1] 余玮, 柯世堂. 考虑风热耦合作用特大型冷却塔内吸力及流场作用机理研究[J]. 工程力学, 2017, 34(12):112-119, 142. YU Wei, KE Shitang. Research on the internal suction and flow field mechanism for super-large cooling towers under wind-thermal coupling[J]. Engineering mechanics, 2017, 34(12):112-119, 142.
[2] 电力行业电力规划设计标准化技术委员会. DLT 5339-2006, 火力发电厂水工设计规范[S]. 北京:中国电力出版社, 2006.Technical Committee for Standardization of Electric Power Planning and Design in Electric Power Industry. DLT 5339-2006, Code for hydraulic design of fossil fuel power plants[S]. Beijing:China Electric Power Press, 2006.
[3] VGB PowerTech. VGB-R610Ue, VGB-Guideline:structural design of cooling towers[S]. Essen:BTR Bautechnik Bei Kuhlturmen, 2005.
[4] 余文林, 柯世堂. 基于风-雨双向耦合的大型冷却塔结构响应[J]. 哈尔滨工业大学学报, 2018, 50(12):114-118. YU Wenlin, KE Shitang. Structural responses of large cooling tower based on bidirectional coupling between wind and rain[J]. Journal of Harbin Institute of Technology, 2018, 50(12):114-118.
[5] 柯世堂, 杜凌云, 侯宪安. 考虑百叶窗透风率超大型冷却塔内吸力风振系数研究[J]. 建筑结构学报, 2018, 39(8):36-44. KE Shitang, DU Lingyun, HOU Xian’an. Research on influence of louver ventilation rates on internal wind vibration coefficient for super large cooling towers[J]. Journal of building structures, 2018, 39(8):36-44.
[6] 邹云峰, 何旭辉, 陈政清, 等. 超大型冷却塔内表面风荷载风洞试验与数值模拟研究[J]. 空气动力学学报, 2015, 33(5):697-705. ZOU Yunfeng, HE Xuhui, CHEN Zhengqing, et al. Wind tunnel test and numerical simulation study on internal wind loading for super large cooling tower[J]. Acta aerodynamica sinica, 2015, 33(5):697-705.
[7] 董国朝, 张建仁, 蔡春声, 等. 考虑内部构件影响的超大型冷却塔内压系数研究[J]. 工程力学, 2016, 33(4):77-83. DONG Guochao, ZHANG Jianren, CAI Chunsheng, et al. Study on internal surface pressure coefficient of super-large cooling tower with different internal main components[J]. Engineering mechanics, 2016, 33(4):77-83.
[8] BLOCKEN B, CARMELIET J. Spatial and temporal distribution of driving rain on a low-rise building[J]. Wind and structures, 2002, 5(5):441-462.
[9] XIN Dabo, LI Hui, WANG Liang, et al. Experimental study on static characteristics of the bridge deck section under simultaneous actions of wind and rain[J]. Journal of wind engineering and industrial aerodynamics, 2012, 107-108:17-27.
[10] FU Xing, LI Hongnan, LI Gang. Fragility analysis and estimation of collapse status for transmission tower subjected to wind and rain loads[J]. Structural safety, 2016, 58:1-10.
[11] WANG L Y, XU Y L. Active stiffness control of wind-rain-induced vibration of prototype stay cable[J]. International journal for numerical methods in engineering, 2008, 74(1):80-100.
[12] MCFARQUHAR G M, LIST R. The raindrop mean free path and collision rate dependence on rainrate for Three-Peak equilibrium and Marshall-Palmer distributions[J]. Journal of the atmospheric sciences, 1991, 48(17):1999-2003.
[13] BI J H, QIAO H Y, NIKITAS N, et al. Numerical modelling for rain wind induced vibration of cables with longitudinal ribs[J]. Journal of wind engineering & industrial aerodynamics, 2018, 178:69-79.
[14] KE Shitang, YU Wenlin, GE Yaojun. Wind load characteristics and action mechanism on internal and external surfaces of super-large cooling towers under wind-rain combined effects[J]. Mathematical problems in engineering. 2018, 2018:2921709.

相似文献/References:

[1]荆丰梅,张亮,张鹏远,等.潮流能发电增速导流罩研究[J].哈尔滨工程大学学报,2012,(04):409.[doi:10.3969/j.issn.1006-7043.201104046]
 JING Fengmei,ZHANG Liang,ZHANG Pengyuan,et al.Study on an accelerated diffuser of tidal current power generation[J].hebgcdxxb,2012,(05):409.[doi:10.3969/j.issn.1006-7043.201104046]
[2]陈广亮,徐俊英,张志俭,等.PWR栅元流固共轭传热CFD计算方案研究[J].哈尔滨工程大学学报,2018,39(04):716.[doi:10.11990/jheu.201612110]
 CHEN Guangliang,XU Junying,ZHANG Zhijian,et al.Research on the CFD scheme of liquid-solid conjugate heat transfer in PWR fuel cells[J].hebgcdxxb,2018,39(05):716.[doi:10.11990/jheu.201612110]

备注/Memo

备注/Memo:
收稿日期:2017-12-16。
基金项目:国家自然科学基金项目(51878351,U1733129,51761165022);江苏省优秀青年基金项目(BK20160083);江苏省六大人才高峰层次人才计划(JZ-026).
作者简介:余文林,男,工程师,硕士;柯世堂,男,教授,博士生导师.
通讯作者:柯世堂,E-mail:keshitang@163.com
更新日期/Last Update: 2019-05-14