[1]鲁正,刘晓蕾,张坤,等.船舶压载水紫外处理模块的模拟优化及实验研究[J].哈尔滨工程大学学报,2018,39(12):1956-1962.[doi:10.11990/jheu.201801059]
 LU Zheng,LIU Xiaolei,ZHANG Kun,et al.Simulation of optimization and experimental research on ultraviolet sterilizer for ballast water system[J].hebgcdxxb,2018,39(12):1956-1962.[doi:10.11990/jheu.201801059]
点击复制

船舶压载水紫外处理模块的模拟优化及实验研究(/HTML)
分享到:

《哈尔滨工程大学学报》[ISSN:1006-6977/CN:61-1281/TN]

卷:
39
期数:
2018年12期
页码:
1956-1962
栏目:
出版日期:
2018-12-05

文章信息/Info

Title:
Simulation of optimization and experimental research on ultraviolet sterilizer for ballast water system
作者:
鲁正1 刘晓蕾2 张坤1 施悦1
1. 哈尔滨工程大学 动力与能源工程学院, 黑龙江 哈尔滨 150001;
2. 哈尔滨工程大学 经济管理学院, 黑龙江 哈尔滨 150001
Author(s):
LU Zheng1 LIU Xiaolei2 ZHANG Kun1 SHI Yue1
1. College of Power and Energy Engineering, Harbin Engineering University, Harbin 150001, China;
2. School of Economics and Management, Harbin Engineering University, Harbin 150001, China
关键词:
压载水紫外杀菌器数值模拟人工神经网络流场流态光强分布工艺优化灭活效果
分类号:
X55
DOI:
10.11990/jheu.201801059
文献标志码:
A
摘要:
针对应用紫外(UV)技术处理船舶压载水过程中存在的机制不清、模拟困难等机理问题,采用系统改进前的实验结果作为样本,利用神经网络模型对影响系统杀菌效果的不同因子进行重要性排序。并结合计算流体力学(CFD)和光学仿真(Tracepro)对系统内UV灯管的不同排布方式进行内部流态和光强分布研究,提出系统的优化控制参数与调控对策。结果表明:UV为系统最重要的可控因子;卧式反应器低流量下易形成涡流,高流量下水力停留时间短,可能导致杀菌不彻底,而立式反应器更加合理,其水流主体方向上流态为推流,在径向方向上能够完全混合;UV灯管横置时光强分布最均匀,杀菌效果最好,与实验结果一致,实现了“灰箱”问题趋于部分“透明”。

参考文献/References:

[1] 党坤. 船舶压载水管理公约现状及履约建议[J]. 中国远洋航务, 2015(2):62-63.DANG Kun. Status and compliance recommendations of ballast water management convention[J]. China maritime, 2015(2):62-63.
[2] 杜还, 张小芳, 张芝涛, 等.中国近海入境船舶压舱水输入特征与风险分析[J]. 海洋通报, 2016, 35(1):112-120.DU Huan, ZHANG Xiaofang, ZHANG Zhitao, et al. Input characteristics and risk analysis of ballast water in entry ships at China’s offshore sea area[J]. Marine science bulletin, 2016, 35(1):112-120.
[3] TAO Ping, XU Yuanlu, ZHOU Yichen, et al. Coal-based carbon membrane coupled with electrochemical oxidation process for the enhanced microalgae removal from simulated ballast water[J]. Water, air, & soil pollution, 2017, 228(11):421.
[4] MAMLOOK R, BADRAN O, ABU-KHADER M M, et al. Fuzzy sets analysis for ballast water treatment systems:best available control technology[J]. Clean technologies and environmental policy, 2008, 10(4):397-407.
[5] CEBI S, CELIK M. Assessment of technology options for ballast water treatment onboard merchant ships based on information axioms under fuzzy environment[C]//Proceedings of the 38th International Conference on Computers and Industrial Engineering. Beijing, China, 2008:652-657.
[6] U.S. Environmental Protection Agency Office of Water. Ultraviolet disinfection guidance manual[R]. EPA 815-R-06-007. Washington, DC:EPA, 2006.
[7] NAUNOVIC Z, PENNELL K G, BLATCHLEY Ⅲ E R. Development and performance of a fluence rate distribution model for a cylindrical excimer lamp[J]. Environmental science & technology, 2008, 42(5):1605-1614.
[8] LIU Dong, WU Chin, LINDEN K, et al. Numerical simulation of UV disinfection reactors:evaluation of alternative turbulence models[J]. Applied mathematical modelling, 2007, 31(9):1753-1769.
[9] 侯月晖, 冯丽娟, 张大海, 等. 船舶压载水处理方法研究进展及应用[J]. 环境科学导刊, 2018, 37(S1):90-94.HOU Yuehui, FENG Lijuan, ZHANG Dahai, et al. Research status of ballast water treatment technologies and system[J]. Environmental science survey, 2018, 37(S1):90-94.
[10] 刘畅, 傅祥棣, 李俊霞, 等. 基于Fluent的压载水UV杀菌装置的优化及仿真[J]. 舰船电子工程, 2018, 38(7):80-84.LIU Chang, FU Xiangdi, LI Junxia, et al. Optimization and simulation of UV processing device for ballast water based on fluent[J]. Ship electronic engineering, 2018, 38(7):80-84.
[11] XU Chen, RANGAIAH G P, ZHAO Xiusong. A computational study of the effect of lamp arrangements on the performance of ultraviolet water disinfection reactors[J]. Chemical engineering science, 2015, 122:299-306.
[12] 张光辉. UV消毒MBR出水及反应器水力特性和UV剂量计算的研究[D]. 天津:天津大学, 2006.ZHANG Guanghui. Study on disinfection of MBR effluent and reactor hydraulic characteristics and calculation of UV dose[D]. Tianjin:Tianjin University, 2006.
[13] ELYASI S, TAGHIPOUR F. Simulation of UV photoreactor for water disinfection in Eulerian framework[J]. Chemical engineering science, 2006, 61(14):4741-4749.
[14] 曲朝阳, 计超, 郭晓利, 等. 基于传递函数自我优化的BP网络算法改进[J]. 电测与仪表, 2014, 51(11):56-59, 64.QU Zhaoyang, JI Chao, GUO Xiaoli, et al. BP neural network algorithm improvement based on transfer function self-optimization[J]. Electrical measurement & instrumentation, 2014, 51(11):56-59, 64.
[15] 胡坤, 李振北. ANSYS ICEM CFD工程实例详解[M]. 北京:人民邮电出版社, 2014:151-155.HU Kun, LI Zhenbei. Detailed explanation of engineering examples of ANASYS ICEM CFD[M]. Beijing:Posts & Telecom Press, 2014:151-155.
[16] 徐仲, 陈国桢, 苏婷, 等. 紫外/臭氧复合压载水处理系统的建立与运行[J]. 哈尔滨工业大学学报, 2018, 50(2):100-103.XU Zhong, CHEN Guozhen, SU Ting, et al. Establishment and performance of the O3/UV pilot-scale ballast water treatment[J]. Journal of Harbin Institute of Technology, 2018, 50(2):100-103.
[17] 陈宁, 孙玉科. 纳米TiO2光催化和紫外线辐照法相结合杀灭压载水中藻类模拟实验研究[J]. 船舶工程, 2012, 34(2):96-99.CHEN Ning, SUN Yuke. Simulation study of killing algae in ballast water by the combination of nanometer TiO2 photocatalysis and ultraviolet irradiation[J]. Ship engineering, 2012, 34(2):96-99.
[18] 易瑔, 孙先知, 杨建昌, 等. 高能激光与K9玻璃相互作用仿真实验研究[J]. 激光与红外, 2017, 47(7):808-812.YI Quan, SUN Xianzhi, YANG Jianchang, et al. Simulation research on the interaction between high-energy laser and K9 spectralite[J]. Laser & infrared, 2017, 47(7):808-812.

备注/Memo

备注/Memo:
收稿日期:2018-1-18。
基金项目:国家重点研发计划项目(2017YFC1404605);国家自然科学基金项目(51579049,51509044);高技术船舶项目.
作者简介:鲁正(1989-),男,博士研究生;施悦(1977-),女,教授,博士生导师.
通讯作者:施悦,E-mail:shiyue2018@126.com.
更新日期/Last Update: 2018-12-01