[1]刘晨,张文平,曹贻鹏,等.船用柴油机增压器压气机高效工况气动噪声预测[J].哈尔滨工程大学学报,2019,40(04):759-766.[doi:10.11990/jheu.201801065]
 LIU Chen,ZHANG Wenping,CAO Yipeng,et al.Prediction of marine diesel turbocharger compressor aerodynamic noise at high efficiency operating conditions[J].hebgcdxxb,2019,40(04):759-766.[doi:10.11990/jheu.201801065]
点击复制

船用柴油机增压器压气机高效工况气动噪声预测(/HTML)
分享到:

《哈尔滨工程大学学报》[ISSN:1006-6977/CN:61-1281/TN]

卷:
40
期数:
2019年04期
页码:
759-766
栏目:
出版日期:
2019-04-05

文章信息/Info

Title:
Prediction of marine diesel turbocharger compressor aerodynamic noise at high efficiency operating conditions
作者:
刘晨1 张文平1 曹贻鹏1 明平剑1 刘扬2
1. 哈尔滨工程大学 动力与能源工程学院, 黑龙江 哈尔滨 150001;
2. 重庆江增船舶重工有限公司, 重庆 402263
Author(s):
LIU Chen1 ZHANG Wenping1 CAO Yipeng1 MING Pingjian1 LIU Yang2
1. College of Power and Energy Engineering, Harbin Engineering University, Harbin 150001, China;
2. Chongqing Jiangzeng Shipbuilding Industry Co. Ltd., Chongqing 402263, China
关键词:
船用柴油机涡轮增压器离心压气机气动噪声高效工况数值预测声学指向性边界元
分类号:
TK421
DOI:
10.11990/jheu.201801065
文献标志码:
A
摘要:
为了研究船用低速柴油机涡轮增压器离心压气机在高效运行工况下的气动噪声特性,本文采用数值计算方法对多工况下的压气机噪声进行了数值预测。通过非定常流动数值模拟对比分析了不同运行转速下脉动压力的时、频特性,进而以非定常脉动压力为声源计算了压气机基频离散单音噪声和宽频噪声。结果表明:非定常脉动压力呈现出强周期性,经FFT变换后在叶片基频及倍频处出现明显的压力幅值峰值;且随着转速的增大,非定常脉动压力增强。以叶轮进口面作为声源可以在获取基频离散单音噪声峰值的同时得到宽频噪声谱;随着转速的增大,压气机气动噪声总声压级增大;压气机噪声自管口向外辐射时存在声学指向性,但指向性随着频率和转速的变化而变化。

参考文献/References:

[1] 李磊, 李元生, 敖良波, 等. 船用大功率柴油机涡轮增压器多学科设计优化[M]. 北京:科学出版社, 2011:1-218. LI Lei, LI Yuansheng, AO Liangbo, et al. Multidisciplinary optimization design of high-power marine diesel engine turbocharger[M]. Beijing:Science Press, 2011:1-218.
[2] BRAUN M E, WALSH S J, HORNER J L, et al. Noise source characteristics in the ISO 362 vehicle pass-by noise test:Literature review[J]. Applied acoustics, 2013, 74(11):1241-1265.
[3] RAITOR T, NEISE W. Sound generation in centrifugal compressors[J]. Journal of sound and vibration, 2008, 314(3/4/5):738-756.
[4] 温华兵, 徐文江, 鲍苏宁, 等. 柴油机废气涡轮增压器噪声机理及性能试验研究[J]. 内燃机工程, 2013, 34(1):76-80.WEN Huabing, XU Wenjiang, BAO Suning, et al. Experimental research on noise characteristics and mechanism of marine diesel engine turbocharger[J]. Chinese internal combustion engine engineering, 2013, 34(1):76-80.
[5] LEE S, HEO S, CHEONG C. Prediction and reduction of internal blade-passing frequency noise of the centrifugal fan in a refrigerator[J]. International journal of refrigeration, 2010, 33(6):1129-1141.
[6] SUN H, LEE S. Numerical prediction of centrifugal compressor noise[J]. Journal of sound and vibration, 2004, 269(1/2):421-430.
[7] SUN H, SHIN H, LEE S. Analysis and optimization of aerodynamic noise in a centrifugal compressor[J]. Journal of sound and vibration, 2006, 289(4/5):999-1018.
[8] ROBERTO N G. A numerical approach for predicting flow-induced acoustics at near-stall conditions in an automotive turbocharger compressor[D]. Valencia:Universidad Politecnica de Valencia, 2014:1-212.
[9] TORREGROSA A J, BROATCH A, NAVARRO R, et al. Acoustic characterization of automotive turbocompressors[J]. International journal of engine research, 2015, 16(1):31-37.
[10] EVANS D, WARD A. Minimising turbocharger whoosh noise for diesel powertrains. SAE Technical Paper 2005-01-2485[R]. 2005.
[11] TENG C, HOMCO S. Investigation of compressor whoosh noise in automotive turbochargers[J]. SAE international journal of passenger cars-mechanical systems, 2009, 2(1):1345-1351.
[12] DE LABORDERIE J, MOREAU S, BERRY A, et al. Compressor stage broadband noise prediction using a large-eddy simulation and comparisons with a cascade response model[C]//19th AIAA/CEAS Aeroacoustics Conference. Berlin, Germany, 2013:2013-2042.
[13] NEIL F, RICK D, AHMET S, et al. Noise at the mid to high flow range of a turbocharger compressor[C]//INTER-NOISE and NOISE-CON Congress and Conference Proceedings. New York, NY, 2012:8127-8138.
[14] FONTANESI S, PALTRINIERI S, CANTORE G. CFD analysis of the acoustic behavior of a centrifugal compressor for high performance engine application[J]. Energy procedia, 2014, 45:759-768.
[15] BROATCH A, GALINDO J, NAVARRO R, et al. Numerical and experimental analysis of automotive turbocharger compressor aeroacoustics at different operating conditions[J]. International journal of heat and fluid flow, 2016, 61:245-255.

相似文献/References:

[1]贺玉海.船用主机气缸润滑系统电控改装的配机试验研究[J].哈尔滨工程大学学报,2011,(04):411.[doi:doi:10.3969/j.issn.1006-7043.2011.04.003]
 HE Yuhai.Research on calibration tests of an electronically controlled cylinder lubrication system for a large lowspeed marine diesel engine[J].hebgcdxxb,2011,(04):411.[doi:doi:10.3969/j.issn.1006-7043.2011.04.003]
[2]邢世凯,马朝臣,于立国.车用增压器涡轮脉冲进气非稳态特性[J].哈尔滨工程大学学报,2013,(02):183.[doi:10.3969/j.issn.1006-7043.201110027]
 XING Shikai,MA Chaochen,YU Liguo.Investigation on vehicular turbocharger turbine characteristics under non-steady flow condition[J].hebgcdxxb,2013,(04):183.[doi:10.3969/j.issn.1006-7043.201110027]
[3]魏立队,段树林,魏海军.柔性机体下船舶柴油机主轴承TEHD润滑分析[J].哈尔滨工程大学学报,2015,(08):1035.[doi:10.3969/j.issn.1006-7043.201404070]
 WEI Lidui,DUAN Shulin,WEI Haijun.TEHD lubrication analysis of the main bearings of a marine diesel engine based on the flexible engine block[J].hebgcdxxb,2015,(04):1035.[doi:10.3969/j.issn.1006-7043.201404070]
[4]马朝臣,张亚杰,张虹.车用涡轮增压器启停冲击平台仿真及应用[J].哈尔滨工程大学学报,2017,38(09):1470.[doi:10.11990/jheu.201605039]
 MA Chaochen,ZHANG Yajie,ZHANG Hong.Test bench for vehicle turbocharger durability under start-stop working conditions: simulation and applied research[J].hebgcdxxb,2017,38(04):1470.[doi:10.11990/jheu.201605039]

备注/Memo

备注/Memo:
收稿日期:2018-01-20。
基金项目:高技术船舶科研计划项目船用低速机工程(一期).
作者简介:刘晨,男,博士研究生;张文平,男,教授,博士生导师;曹贻鹏,男,副教授.
通讯作者:曹贻鹏,E-mail:yipengcao@hrbeu.edu.cn
更新日期/Last Update: 2019-04-03