[1]唐浩,许枫,杨娟.基于扰动声线声压敏感核的浅水小目标定位[J].哈尔滨工程大学学报,2019,40(05):899-905.[doi:10.11990/jheu.201801075]
 TANG Hao,XU Feng,YANG Juan.Small target localization in shallow water based on the sound pressure sensitivity kernel for perturbed eigenrays[J].hebgcdxxb,2019,40(05):899-905.[doi:10.11990/jheu.201801075]
点击复制

基于扰动声线声压敏感核的浅水小目标定位(/HTML)
分享到:

《哈尔滨工程大学学报》[ISSN:1006-6977/CN:61-1281/TN]

卷:
40
期数:
2019年05期
页码:
899-905
栏目:
出版日期:
2019-05-05

文章信息/Info

Title:
Small target localization in shallow water based on the sound pressure sensitivity kernel for perturbed eigenrays
作者:
唐浩12 许枫1 杨娟1
1. 中国科学院声学研究所 海洋声学技术中心, 北京 100190;
2. 中国科学院大学, 北京 100049
Author(s):
TANG Hao12 XU Feng1 YANG Juan1
1. Ocean Acoustic Technology Center, Institute of Acoustics, Chinese Academy of Sciences, Beijing 100190, China;
2. University of Chinese Academy of Sciences, Beijing 100049, China
关键词:
前向散射小目标定位敏感核扰动声线浅水波导声屏障收发分置声呐声场扰动
分类号:
TB566
DOI:
10.11990/jheu.201801075
文献标志码:
A
摘要:
针对收发合置声呐在浅水信道中对小目标的定位能力受强混响制约的问题,利用目标前向散射开展了声屏障实验研究。本文将扰动声线声压敏感核方法应用于小目标定位,仿真分析了不同水底模型精度下的定位性能。仿真结果表明:该方法不仅适用于存在水底测量误差的情况,而且当水底起伏不大时,直接将其近似为平底仍可确定目标的大致位置,其中对于水体中上部的目标定位效果更好。湖试数据结果表明:基于扰动声线声压敏感核的定位方法在自然环境下仍然适用,并且定位效果与仿真结果一致。

参考文献/References:

[1] SONG H, KUPERMAN W A, HODGKISS W S, et al. Demonstration of a high-frequency acoustic barrier with a time-reversal mirror[J]. IEEE Journal of oceanic engineering, 2003, 28(2):246-249.
[2] PRADA C, DE ROSNY J, CLORENNEC D, et al. Experimental detection and focusing in shallow water by decomposition of the time reversal operator[J]. The journal of the acoustical society of America, 2007, 122(2):761-768.
[3] ROUX P, KUPERMAN W A, HODGKISS W S, et al. A nonreciprocal implementation of time reversal in the ocean[J]. The journal of the acoustical society of America, 2004, 116(2):1009-1015.
[4] 罗方方, 生雪莉, 梅继丹, 等. 基于MVDR高分辨算法的时反定位技术研究[J]. 哈尔滨工程大学学报, 2010, 31(7):945-950. LUO Fangfang, SHENG Xueli, MEI Jidan, et al. Time reversal mirror localization technology based on a high-resolution MVDR algorithm[J]. Journal of Harbin Engineering University, 2010, 31(7):945-950.
[5] FOLEGOT T, MARTINELLI G, GUERRINI P, et al. An active acoustic tripwire for simultaneous detection and localization of multiple underwater intruders[J]. The journal of the acoustical society of America, 2008, 124(5):2852-2860.
[6] MARANDET C, ROUX P, NICOLAS B, et al. Target detection and localization in shallow water:an experimental demonstration of the acoustic barrier problem at the laboratory scale[J]. The journal of the acoustical society of America, 2011, 129(1):85-97.
[7] 温凤丹, 林巨. 浅海环境下的声学灵敏度核函数研究[J]. 南京大学学报(自然科学), 2017, 53(1):135-143. WEN Fengdan, LIN Ju. The study of sensitivity kernels in shallow water environments[J]. Journal of Nanjing University (natural sciences), 2017, 53(1):135-143.
[8] SKARSOULIS E K, CORNUELLE B D. Travel-time sensitivity kernels in ocean acoustic tomography[J]. The journal of the acoustical society of America, 2004, 116(1):227-238.
[9] ROUX P, ITURBE I, NICOLAS B, et al. Travel-time tomography in shallow water:Experimental demonstration at an ultrasonic scale[J]. The journal of the acoustical society of America, 2011, 130(3):1232-1241.
[10] AULANIER F, NICOLAS B, MARS J I, et al. Shallow-water acoustic tomography from angle measurements instead of travel-time measurements[J]. The journal of the acoustical society of America, 2013, 134(4):EL373-EL379.
[11] HUANG Ying, ZHAO Hangfang, WANG Feiyi. Ocean acoustic tomography using travel-time sensitivity kernel[C]//Proceedings of OCEANS 2016. Shanghai, China, 2016:1-7.
[12] ROUX P, MARANDET C, NICOLAS B, et al. Experimental measurement of the acoustic sensitivity kernel[J]. The journal of the acoustical society of America, 2013, 134(1):EL38-EL44.
[13] YILDIZ S, ROUX P, RAKOTONARIVO S T, et al. Target localization through a data-based sensitivity kernel:A perturbation approach applied to a multistatic configuration[J]. The journal of the acoustical society of America, 2014, 135(4):1800-1807.
[14] SARKAR J, MARANDET C, ROUX P, et al. Sensitivity kernel for surface scattering in a waveguide[J]. The journal of the acoustical society of America, 2012, 131(1):111-118.
[15] ROUX P, NICOLAS B. Inverting for a deterministic surface gravity wave using the sensitivity-kernel approach[J]. The journal of the acoustical society of America, 2014, 135(4):1789-1799.
[16] 张培珍, 王朔中, 王润田, 等. 修正一阶Born近似改进水中弱散射目标的散射声场预报[J]. 声学学报, 2014, 39(3):331-338. ZHANG Peizhen, WANG Shuozhong, WANG Runtian, et al. Modification to first-order Born approximation for improved prediction of scattered sound from weakly scattering objects[J]. Acta acustica, 2014, 39(3):331-338.
[17] FARAN J J JR. Sound scattering by solid cylinders and spheres[J]. The journal of the acoustical society of America, 1951, 23(4):405-418.

备注/Memo

备注/Memo:
收稿日期:2018-1-25。
基金项目:国家自然科学基金项目(11404365);中国科学院战略性先导科技专项项目(XDA13030604).
作者简介:唐浩,男,博士研究生;许枫,男,研究员,博士生导师.
通讯作者:许枫,E-mail:xf@mail.ioa.ac.cn
更新日期/Last Update: 2019-05-14