[1]高喜峰,廖宏运,徐万海.非对称边界悬跨管道的涡激振动疲劳特性分析[J].哈尔滨工程大学学报,2019,40(05):960-966.[doi:10.11990/jheu.201801093]
 GAO Xifeng,LIAO Hongyun,XU Wanhai.Analysis of VIV-induced fatigue characteristic of spanning pipelines with asymmetric boundary[J].hebgcdxxb,2019,40(05):960-966.[doi:10.11990/jheu.201801093]
点击复制

非对称边界悬跨管道的涡激振动疲劳特性分析(/HTML)
分享到:

《哈尔滨工程大学学报》[ISSN:1006-6977/CN:61-1281/TN]

卷:
40
期数:
2019年05期
页码:
960-966
栏目:
出版日期:
2019-05-05

文章信息/Info

Title:
Analysis of VIV-induced fatigue characteristic of spanning pipelines with asymmetric boundary
作者:
高喜峰 廖宏运 徐万海
天津大学 水利工程仿真与安全国家重点实验室, 天津 300072
Author(s):
GAO Xifeng LIAO Hongyun XU Wanhai
State Key Laboratory of Hydraulic Engineering Simulation and Safety, Tianjin University, Tianjin 300072, China
关键词:
非对称边界涡激振动土体弹簧管-土相互作用悬跨海底管道S-N曲线法疲劳损伤
分类号:
TV312
DOI:
10.11990/jheu.201801093
文献标志码:
A
摘要:
针对工程实际中海底悬跨管道两端边界处多为非对称约束的现状,本文做了相应的涡激振动疲劳损伤分析。运用土体弹簧描述悬跨管道两端跨肩处的管-土作用,通过改变土体弹簧刚度模拟边界条件变化。利用理论模型模拟结构的振动响应,结合S-N曲线法,分析了非对称边界条件下海底悬跨管道疲劳特性。研究结果表明:悬跨两端的土体扭转刚度存在一个临界区域(扭转刚度为106~108)。当扭转刚度在此临界区域内变化时,海底悬跨管道的疲劳特性会发生剧烈变化;在此区域外,端部扭转弹簧刚度对结构疲劳影响较小。

参考文献/References:

[1] SARPKAYA T. A critical review of the intrinsic nature of vortex-induced vibrations[J]. Journal of fluids and structures, 2004, 19(4):389-447.
[2] KOUSHAN K. Vortex induced vibrations of free span pipelines[D]. Norway:Norwegian University of Science and Technology (NTNU), 2009:1-217.
[3] LARSEN C M, KOUSHAN K, PASSANO E. Frequency and time domain analysis of vortex induced vibrations for free span pipelines[C]//Proceedings of the 21st International Conference on Offshore Mechanics and Arctic Engineering. Oslo, Norway, 2002:103-111.
[4] 何旭, 王永学, 李小超. 考虑管土作用海底管线涡激振动分析[J]. 中国海洋平台, 2011, 26(6):21-26. HE Xu, WANG Yongxue, LI Xiaochao. Analysis of VIV for free spanning pipelines considering pipe-soil interaction[J]. China offshore platform, 2011, 26(6):21-26.
[5] XIAO Fei. CFD simulation of vortex-induced vibrations of free span pipelines including pipe-soil interactions[D]. College Station, TX, USA:Texas A&M University, 2015:1-68.
[6] 徐万海, 谢武德, 高喜峰, 等. 非对称管-土边界的海底悬跨管道涡激振动特性[J]. 地震工程学报, 2014, 36(4):773-777, 789. XU Wanhai, XIE Wude, GAO Xifeng, et al. Vortex-induced vibrations of a free-span submarine pipeline under asymmetric pipe-soil boundary conditions[J]. China earthquake engineering journal, 2014, 36(4):773-777, 789.
[7] KAPURIA S, SALPEKAR V Y, SENGUPTA S. Fatigue due to vortex-induced cross flow oscillations in free spanning pipelines supported on elastic soil bed[C]//Proceedings of the Ninth International Offshore and Polar Engineering Conference. Brest, France, 1999:197-203.
[8] DONG Jie, CHEN Xuedong, WANG Bing, et al. The effect of soil on the structural response and fatigue life of free span for submarine pipeline[C]//Proceedings of ASME 2015 Pressure Vessels and Piping Conference. Boston, United States, 2015:V007T07A017.
[9] HAN Yusha, CLUKEY E, RAVIRALA N, et al. Investigation of pipe-soil interaction on the fatigue life extension of subsea pipeline free spans[C]//Proceedings of the Twenty-Seventh International Ocean and Polar Engineering Conference. San Francisco, United States, 2017:1171-1175.
[10] CASANOVA E, BLANCO A. Effects of soil non-linearity on the dynamic behavior and fatigue life of pipeline spans subjected to slug flow[C]//Proceedings of the 29th International Conference on Ocean, Offshore and Arctic Engineering. Shanghai, China, 2010:185-192.
[11] FACCHINETTI M L, DE LANGRE E, BIOLLEY F. Coupling of structure and wake oscillators in vortex-induced vibrations[J]. Journal of fluids and structures, 2004, 19(2):123-140.
[12] XU Wanhai, WU Yingxiang, ZENG Xiaohui, et al. A new wake oscillator model for predicting vortex induced vibration of a circular cylinder[J]. Journal of hydrodynamics, 2010, 22(3):381-386.
[13] BAI Yong. Pipelines and risers[M]. New York:Elsevier Ocean Engineering Book Series, 2001:1-495.
[14] Det Norske Veritas. DNV-RP-F105, Free spanning pipelineS[S]. Norway:DNV, 2006.
[15] Det Norske Veritas. DNV-RP-C203, Fatigue design of offshore steel structures[S]. Norway:DNV, 2010.
[16] YEGANEH BAKHTIARY A, GHAHERI A, VALIPOUR R. Analysis of offshore pipeline allowable free span length[J]. International journal of civil engineering, 2007, 5(1):84-91.

相似文献/References:

[1]辛大波,张明晶,王亮,等.大跨度桥梁主梁风雨致涡激振动试验研究[J].哈尔滨工程大学学报,2011,(09):1168.[doi:doi:10.3969/j.issn.1006-7043.2011.09.013]
 XIN Dabo,ZHANG Mingjing,WANG Liang,et al.Experimental study on wind-rain-induced and vortex-induced vibration in bridge deck sections of long-span bridges[J].hebgcdxxb,2011,(05):1168.[doi:doi:10.3969/j.issn.1006-7043.2011.09.013]
[2]赵恩金,拾兵,曹坤.导流板对海底管线涡激振动的影响[J].哈尔滨工程大学学报,2016,37(03):320.[doi:10.11990/jheu.201411081]
 ZHAO Enjin,SHI Bing,CAO Kun.Influence of reflectors on vortex-induced vibration of subsea pipelines[J].hebgcdxxb,2016,37(05):320.[doi:10.11990/jheu.201411081]
[3]徐万海,谢武德,彭碧瑶,等.考虑管土作用悬跨管道纯顺流向涡激振动研究[J].哈尔滨工程大学学报,2016,37(09):1184.[doi:10.11990/jheu.201507052]
 XU Wanhai,XIE Wude,PENG Biyao,et al.Study on pure in-line vortex-induced vibrations of free-spanning pipeline considering pipe-soil interaction at shoulders[J].hebgcdxxb,2016,37(05):1184.[doi:10.11990/jheu.201507052]
[4]徐万海,马烨璇,罗浩,等.小倾角倾斜柔性圆柱涡激振动实验研究[J].哈尔滨工程大学学报,2017,38(02):195.[doi:10.11990/jheu.201511035]
 XU Wanhai,MA Yexuan,LUO Hao,et al.Vortex-induced vibration of an inclined flexible cylinder with a small yaw angle[J].hebgcdxxb,2017,38(05):195.[doi:10.11990/jheu.201511035]
[5]唐友刚,青兆熹,张杰,等.深海立管涡激振动预报模型及影响因素[J].哈尔滨工程大学学报,2017,38(03):338.[doi:10.11990/jheu.201603096]
 TANG Yougang,QING Zhaoxi,ZHANG Jie,et al.Prediction model and influence factors on vortex-induced vibration of deepwater risers[J].hebgcdxxb,2017,38(05):338.[doi:10.11990/jheu.201603096]
[6]陈东阳,Laith K. Abbas,王国平,等.流场环境对柔性立管湿模态的影响[J].哈尔滨工程大学学报,2017,38(10):1587.[doi:10.11990/jheu.201605083]
 CHEN Dongyang,LAITH K. Abbas,WANG Guoping,et al.Influence of flow field environment on wet modal vibration of flexible riser[J].hebgcdxxb,2017,38(05):1587.[doi:10.11990/jheu.201605083]
[7]张大可,赵西增,胡子俊,等.低雷诺数下串列双圆柱涡激振动的数值模拟[J].哈尔滨工程大学学报,2018,39(02):247.[doi:10.11990/jheu.201610018]
 ZHANG Dake,ZHAO Xizeng,HU Zijun,et al.Numerical study of flow-induced vibration of tandem circular cylinders at low Reynolds number[J].hebgcdxxb,2018,39(05):247.[doi:10.11990/jheu.201610018]
[8]及春宁,邢国源,张力,等.倾斜流作用下柔性立管涡激振动的数值模拟[J].哈尔滨工程大学学报,2018,39(02):324.[doi:10.11990/jheu.201609002]
 JI Chunning,XING Guoyuan,ZHANG Li,et al.Numerical simulations of vortex-induced vibration of flexible riser subjected to inclined flow[J].hebgcdxxb,2018,39(05):324.[doi:10.11990/jheu.201609002]
[9]康庄,张橙,张立健,等.基于改进湍流模型的圆柱涡激振动数值模拟研究[J].哈尔滨工程大学学报,2018,39(05):837.[doi:10.11990/jheu.201702023]
 KANG Zhuang,ZHANG Cheng,ZHANG Lijian,et al.Numerical simulation of vortex-induced vibration of cylinder based on improved turbulence model[J].hebgcdxxb,2018,39(05):837.[doi:10.11990/jheu.201702023]
[10]马哲,徐海炜,程勇,等.双自由度变截面圆柱涡激振动数值模拟[J].哈尔滨工程大学学报,2018,39(07):1150.[doi:10.11990/jheu.201701002]
 MA Zhe,XU Haiwei,CHENG Yong,et al.Two-degree-of-freedom vortex induced vibration of a non-uniform cylinder[J].hebgcdxxb,2018,39(05):1150.[doi:10.11990/jheu.201701002]

备注/Memo

备注/Memo:
收稿日期:2018-1-31。
基金项目:国家自然科学基金项目(51479135,51679167);国家自然科学基金创新研究群体科学基金项目(51621092).
作者简介:高喜峰,男,副教授;徐万海,男,副教授.
通讯作者:徐万海,E-mail:xuwanhai@tju.edu.cn
更新日期/Last Update: 2019-05-14