[1]张雷,张佳宁,尚宇宸,等.三体船压力跃变的喷水推进推力数值方法[J].哈尔滨工程大学学报,2019,40(09):1582-1588.[doi:10.11990/jheu.201802030]
 ZHANG Lei,ZHANG Jianing,SHANG Yuchen,et al.Numerical method for waterjet thrust of trimaran considering pressure jump[J].hebgcdxxb,2019,40(09):1582-1588.[doi:10.11990/jheu.201802030]
点击复制

三体船压力跃变的喷水推进推力数值方法(/HTML)
分享到:

《哈尔滨工程大学学报》[ISSN:1006-6977/CN:61-1281/TN]

卷:
40
期数:
2019年09期
页码:
1582-1588
栏目:
出版日期:
2019-09-05

文章信息/Info

Title:
Numerical method for waterjet thrust of trimaran considering pressure jump
作者:
张雷1 张佳宁1 尚宇宸2 董国祥3 陈伟民3
1. 大连海事大学 船舶与海洋工程学院, 辽宁 大连 116026;
2. 德州农工大学 海洋工程系, 美国德克萨斯州卡城 77843;
3. 上海船舶运输研究所 航运技术与安全国家重点实验室, 上海 200135
Author(s):
ZHANG Lei1 ZHANG Jianing1 SHANG Yuchen2 DONG Guoxiang3 CHEN Weimin3
1. Naval Architecture and Ocean Engineering College, Dalian Maritime University, Dalian 116026, China;
2. Department of Ocean Engineering, Texas A & M University, College Station 77843, USA;
3. State Key Laboratory of Navigation and Safety Technology, Shanghai Ship and Shipping Research Institute, Shanghai 200135, China
关键词:
喷水推进推力压力跃变边界元法边界层理论三体船粘流计算流体力学自航推力减额
分类号:
U661.32
DOI:
10.11990/jheu.201802030
文献标志码:
A
摘要:
为实现喷水推进船舶推力的快速预报,本文提出了一种通过求解兴波阻力、粘性阻力和进流面物理参数实现喷水推进推力快速迭代求解计算的数值方法。本文依据船舶受力的平衡方程,在喷水推进流道内采用压力跃变法,建立船舶喷水推进推力计算数学模型。采用边界元法对兴波势进行求解,通过对船体加长处理,解决兴波阻力计算中流道面元与自由液面面元互相穿透导致的影响系数矩阵异常等数值问题。运用湍流边界层理论计算控制体进流面的速度、压力和进流面边界层影响系数。以三体船船模为研究对象,将数值计算结果与粘流计算流体力学喷水推进自航结果进行对比分析,结果表明:该方法预报三体船喷水推进系统推力相对误差小于5%,能够快速有效预报三体船喷水推进推力性能及推力减额,具有较强的理论研究和工程实际应用价值。

参考文献/References:

[1] VAN TERWISGA T. The effect of waterjet-hull interaction on thrust and propulsive efficiency[C]//Proceedings of 1st International Conference on Fast Sea Transportation Conference. Trondheim, Norway, 1991:1149-1167.
[2] ALEXANDER K V, COOP H, VAN TERWISGA T. Waterjet-hull interaction:recent experimental results[J]. SNAME transactions, 1993, 102:275-335.
[3] WATSON S J P. The use of CFD in sensitivity studies of inlet design[C]//RINA International Conference on Waterjet Propulsion,Latest Developments. Amsterdam,1998. Paper No.8.
[4] KIMBALL R W. Experimental investigations and numerical modeling of a mixed flow marine waterjet[D]. Cambridge:Massachusetts Institute of Technology, 2001.
[5] TAKAI T. Simulation based design for high speed sea lift with waterjets by high fidelity urans approach[D]. Iowa City:University of Iowa, 2010.
[6] ESLAMDOOST A. The hydrodynamics of waterjet/hull interaction[D]. Gothenburg:Chalmers University of Technology, 2014.
[7] 刘承江, 王永生, 张志宏, 等. 喷水推进器推力的CFD计算方法研究[J]. 计算力学学报, 2008, 25(6):927-931.LIU Chengjiang, WANG Yongsheng, ZHANG Zhihong, et al. Research on computational methods of waterjet thrust using CFD[J]. Chinese journal of computational mechanics, 2008, 25(6):927-931.
[8] 刘承江, 王永生, 古成中. 船-泵相互作用对喷水推进器推进性能的影响[J]. 上海交通大学学报, 2016, 50(1):91-97.LIU Chengjiang, WANG Yongsheng, GU Chengzhong. Influence of hull-waterjet interaction on propulsion performances of waterjet[J]. Journal of Shanghai JiaoTong University, 2016, 50(1):91-97.
[9] 丁江明, 王永生. 喷水推进器进水流道参数化设计方法[J]. 哈尔滨工程大学学报, 2011, 32(4):423-427.DING Jiangming, WANG YongSheng. Research on the parametric design of an inlet duct found in a marine waterjet[J]. Journal of Harbin Engineering University, 2011, 32(4):423-427.
[10] 龚杰, 郭春雨, 张海鹏. 喷水推进船模旋转叶轮流场的数值分析[J]. 上海交通大学学报, 2017, 51(3):326-331.GONG Jie, GUO Chunyu, ZHANG Haipeng. Numerical analysis of impeller flow field of waterjet self-propelled ship model[J]. Journal of Shanghai Jiao Tong University, 2017, 51(3):326-331.
[11] 胡健, 黄胜, 马骋, 等. 影响喷水推进器水动力性能的若干因素[J]. 哈尔滨工程大学学报, 2008, 29(1):11-15, 44.HU Jian, HUANG Sheng, MA Cheng, et al. Factors influencing the hydrodynamics of waterjet propellers[J]. Journal of Harbin Engineering University, 2008, 29(1):11-15, 44.
[12] ITTC. The specialist committee on validation of waterjet test procedures[C]//Proceedings of the 23rd ITTC. Venice, Italy, 2002:387-415.
[13] ITTC. The specialist committee on validation of waterjet test procedures:Final report and recommendations to the 24th ITTC. Proceedings of the 24th ITTC, Edinburgh, UK, 2005,VolumeⅡ, 471-508.
[14] ESLAMDOOST A, LARSSON L,BENSOW R. Net and gross thrust in waterjet propulsion[J]. Journal of ship research, 2016, 60(2):1-14.
[15] ZHANG Lei, ZHANG Jianing, ZHANG haojian, et al. Numerical research on the added mass of trimaran from transition state to semi-planing state based on the boundary element method[C]//Proceedings of the ISOPE2017, San Francisco, USA, 2017;984-989.
[16] RONALD W. YEUNG, LU Wang. Radiation and exciting forces of axisymmetric structures with a moonpool in waves[J]. Journal of marine science and application, 2018(3):297-311.
[17] MUHAMMAD Z R, TEMARE P, TAN M. Hydrodynamic coefficients for a 3-d uniform flexible barge using weakly compressible smoothed particle hydrodynamics[J]. Journal of marine science and application, 2018(3):330-340.
[18] 侯远杭, 黄胜, 梁霄. PSO训练的弹性RBFNN在船型优化中的应用研究[J]. 哈尔滨工程大学学报, 2017, 38(2):175-180.HOU Yuanhang, HUANG Sheng, LIANG Xiao. Ship hull optimization based on PSO training FRBF neural network[J]. Journal of Harbin Engineering University, 2017, 38(2):175-180.
[19] 刘志林,于瑞亭,等. 喷水推进船舶边界层影响系数的计算方法研究[J]. 船舶力学,2012,16(10):1115-1121.LIU Zhilin, YU Ruiting, et al. Study of a method for calculating boundary layer influence coefficients of ship and boat propelled by water-jet[J]. Journal of ship mechanics, 2012, 16(10):1115-1121.

备注/Memo

备注/Memo:
收稿日期:2018-02-27。
基金项目:国家国际科技合作专项项目(2013DFA80760);中央高校基本科研业务费专项资金项目(3132016339);高技术船舶科研计划项目.
作者简介:张雷,男,博士研究生;张佳宁,女,教授,博士生导师.
通讯作者:张佳宁,E-mail:zhangjianing@dlmu.edu.cn.
更新日期/Last Update: 2019-09-06