[1]张殿伦,肖爽,张友文,等.基于稀疏时变水声信道的判决反馈均衡算法[J].哈尔滨工程大学学报,2019,40(05):892-898.[doi:10.11990/jheu.201803040]
 ZHANG Dianlun,XIAO Shuang,ZHANG Youwen,et al.Decision feedback equalization algorithm based on sparse and time-varying underwater acoustic channel[J].hebgcdxxb,2019,40(05):892-898.[doi:10.11990/jheu.201803040]
点击复制

基于稀疏时变水声信道的判决反馈均衡算法(/HTML)
分享到:

《哈尔滨工程大学学报》[ISSN:1006-6977/CN:61-1281/TN]

卷:
40
期数:
2019年05期
页码:
892-898
栏目:
出版日期:
2019-05-05

文章信息/Info

Title:
Decision feedback equalization algorithm based on sparse and time-varying underwater acoustic channel
作者:
张殿伦123 肖爽123 张友文123 崔宏宇123
1. 哈尔滨工程大学 水声技术重点实验室, 哈尔滨 150001;
2. 海洋信息获取与安全工信部重点实验室(哈尔滨工程大学), 工业和信息化部, 哈尔滨 150001;
3. 哈尔滨工程大学 水声工程学院, 哈尔滨 150001
Author(s):
ZHANG Dianlun123 XIAO Shuang123 ZHANG Youwen123 CUI Hongyu123
1. Acoustic Science and Technology Laboratory, Harbin Engineering University, Harbin 150001, China;
2. Key Laboratory of Marine Information Acquisition and Security(Harbin Engineering University), Ministry of Industry and Information Technology, Harbin 150001, China;
3. College of Underwater Acoustic Engineering, Harbin Engineering University, Harbin 150001, China
关键词:
水声通信自适应算法自适应判决反馈均衡器变步长l0范数非圆特性最小均方算法仿射投影算法
分类号:
TN911.5;TB567
DOI:
10.11990/jheu.201803040
文献标志码:
A
摘要:
针对常规的判决反馈均衡处理稀疏时变水声信道接收信号时性能下降的问题,本文在最小均方算法和仿射投影算法的基础上,提出了改进的自适应算法。算法引入了随输入信号变化的迭代步长因子及表征系统稀疏特性的l0范数约束,并且利用通信接收信号的非圆特性的宽线性输入方式改善性能。仿真结果表明:本文提出的算法具有更快的收敛速度和更小的稳态均方误差,仿真和试验数据分析结果证明了应用改进算法的自适应判决反馈均衡器有更低的误码率。

参考文献/References:

[1] STOJANOVIC M, CATIPOVIC J, PROAKIS J G. Adaptive multichannel combining and equalization for underwater acoustic communications[J]. The journal of the acoustical society of america, 1993, 94(3):1621-1631.
[2] 宁小玲, 刘忠, 罗亚松, 等. 水声信道快速收敛自适应均衡算法[J]. 系统工程与电子技术, 2010, 32(12):2524-2527. NING Xiaoling, LIU Zhong, LUO Yasong, et al. Fast convergence adaptive equalization algorithm for underwater acoustic channels[J]. Systems engineering and electronics, 2010, 32(12):2524-2527.
[3] 欧阳晓曦. 自适应均衡技术在水声通信中的应用研究[D]. 西安:西北工业大学, 2006. OUYANG Xiaoxi. Research on adaptive equalization in underwater acoustic communication system[D]. Xi’an:Northwestern Polytechnical University, 2006.
[4] HAYKIN S. 自适应滤波器原理[M]. 郑宝玉, 译. 4版. 北京:电子工业出版社, 2003. HAYKIN S. Adaptive filter theory[M]. ZHENG Baoyu, trans. 4th ed. Beijing:Publishing House of Electronics Industry, 2003.
[5] DUTTWEILER D L. Proportionate normalized least mean squares adaptation in echo cancelers[J]. IEEE transactions on speech and audio processing, 2000, 8(5):508-518.
[6] BENESTY J, GAY S L. An improved PNLMS algorithm[C]//Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing. Orlando, FL, USA, 2002:Ⅱ-1881-Ⅱ-1884.
[7] DENG Hongyang, DOROSLOVACKI M. Proportionate adaptive algorithms for network echo cancellation[J]. IEEE transactions on signal processing, 2006, 54(5):1794-1803.
[8] DENG Hongyang, DYBA R A. Partial update PNLMS algorithm for network echo cancellation[C]//Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing. Taipei, Taiwan, 2009:1329-1332.
[9] SHI Yunmei, HUANG Lei, QIAN Cheng, et al. Shrinkage linear and widely linear complex-valued least mean squares algorithms for adaptive beamforming[J]. IEEE transactions on signal processing, 2015, 63(1):119-131.
[10] CHEN Yilun, GU Yuantao, HERO A O. Sparse LMS for system identification[C]//Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing. Taipei, Taiwan, 2009:3125-3128.
[11] TAHERI O, VOROBYOV S A. Sparse channel estimation with lp-norm and reweighted l1-norm penalized least mean squares[C]//Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing. Prague, Czech Republic, 2011:2864-2867.
[12] CAND È S E J, WAKIN M B, BOYD S P. Enhancing sparsity by reweighted l1 minimization[J]. Journal of fourier analysis and applications, 2008, 14(5/6):877-905.
[13] GU Yuantao, JIN Jian, MEI Shunliang. l0-norm constraint LMS algorithm for sparse system identification[J]. IEEE signal processing letters, 2009, 16(9):774-777.
[14] 刘立刚. 稀疏冲激响应的自适应滤波算法及其应用研究[D]. 上海:复旦大学, 2010. LIU Ligang. Research on adaptive filtering algorithms for sparse impulse response and their applications[D]. Shanghai:Fudan University, 2010.
[15] ADALI T, SCHREIER P J, SCHARF L L. Complex-valued signal processing:The proper way to deal with impropriety[J]. IEEE transactions on signal processing, 2011, 59(11):5101-5125.
[16] ZHANG Youwen, XIAO Shuang, HUANG Defeng, et al. l0-norm penalised shrinkage linear and widely linear LMS algorithms for sparse system identification[J]. IET signal processing, 2017, 11(1):86-94.
[17] SHI Yunmei., HUANG Lei, QIAN Cheng, SO H C. Shrinkage Linear and Widely Linear Complex Valued Least Mean Squares Algorithms for Adaptive Beamforming[J]. IEEE transactions on signal processing, 2015, 63(1):119-131.
[18] PICINBONO B, CHEVALIER P. Widely linear estimation with complex data[J]. IEEE transactions on signal processing, 1995, 43(8):2030-2033.
[19] QU Jinyou, ZHANG Jianyun, ZHANG Xinan. A widely-linear LMS algorithm for adaptive beamformer[C]//IEEE International Symposium on Microwave, Antenna, Propagation and EMC Technologies for Wireless Communications. Hangzhou, China, 2007:1060-1063.
[20] ZHANG Youwen, XIAO Shuang, SUN Dajun, et al. Low-complexity l0-norm penalized shrinkage linear and widely linear affine projection algorithms[J]. Circuits, systems, and signal processing, 2017, 36(8):3385-3408.
[21] DAUBECHIES I, DEFRISE M, DEMOL C. An iterative thresholding algorithm for linear inverse problems with a sparsity constraint[J]. Communications on pure and applied mathematics, 2004, 57(11):1413-1457.
[22] ZIBULEVSKY M, ELAD M. l1-l2 optimization in signal and image processing[J]. IEEE transactions on signal processing magazine, 2010, 27(3):76-88.
[23] CHEN Teyan. Novel Adaptive Signal Processing Techniques for Underwater Acoustic Communications[D]. New York:University of York, 2011.
[24] 裴晓黎, 宁小玲, 刘忠, 等. 水声信道均衡算法比较研究[J]. 计算机工程与应用, 2014, 50(1):111-115. PEI Xiaoli, NING Xiaoling, LIU Zhong, et al. Comparison of equalization algorithms for underwater acoustic channels[J]. Computer engineering and applications, 2014, 50(1):111-115.

相似文献/References:

[1]桑恩方,徐小卡,乔钢,等.Turbo码在水声OFDM通信中的应用研究[J].哈尔滨工程大学学报,2009,(01):60.
 SANG Enfang,XU Xiao-ka,QIAO Gang,et al.Application study of turbo code for underwater acoustic communication based on OFDM[J].hebgcdxxb,2009,(05):60.
[2]魏英杰,吕瑞,于开平,等.超空泡航行体的自适应变结构控制设计[J].哈尔滨工程大学学报,2010,(10):0.
 WEI Ying-jie,LV Rui,YU Kai-ping,et al.Design of Adaptive Variable-Structure Controller for Supercavitating Vehicle[J].hebgcdxxb,2010,(05):0.
[3]刘凇佐,周锋,孙宗鑫,等.单矢量水听器OFDM水声通信技术实验[J].哈尔滨工程大学学报,2012,(08):941.[doi:10.3969/j.issn.1006-7043.201111055]
 LIU Songzuo,ZHOU Feng,SUN Zongxin,et al.Experimental study of OFDM underwater acoustic communication using a vector hydrophone[J].hebgcdxxb,2012,(05):941.[doi:10.3969/j.issn.1006-7043.201111055]
[4]肖东,莫福源,陈庚,等.码率可调节的高质量语音编码算法[J].哈尔滨工程大学学报,2012,(08):956.[doi:10.3969/j.issn.1006-7043.201109014]
 XIAO Dong,MO Fuyuan,CHEN Geng,et al.An adjustable bit rate high quality speech coder[J].hebgcdxxb,2012,(05):956.[doi:10.3969/j.issn.1006-7043.201109014]
[5]于洋,周锋,乔钢.小Kasami序列的正交码元移位键控扩频水声通信[J].哈尔滨工程大学学报,2014,(01):81.[doi:10.3969/j.issn.1006-7043.201303065]
 YU Yang,ZHOU Feng,QIAO Gang.Orthogonal code shift keying spread spectrum underwater acoustic communications employing the small Kasami sequence[J].hebgcdxxb,2014,(05):81.[doi:10.3969/j.issn.1006-7043.201303065]
[6]刘凇佐,刘冰洁,尹艳玲,等.M元仿海豚叫声隐蔽水声通信[J].哈尔滨工程大学学报,2014,(01):119.[doi:10.3969/j.issn.1006-7043.201306016]
 LIU SongzuoHT,LIU Bingjie,YIN Yanling,et al.M-ray covert underwater acoustic communication by mimicking dolphin sounds[J].hebgcdxxb,2014,(05):119.[doi:10.3969/j.issn.1006-7043.201306016]
[7]冯成旭,许江湖,罗亚松.消除冗余循环前缀的水声信道OFDM频域均衡算法[J].哈尔滨工程大学学报,2014,(04):482.[doi:10.3969/j.issn.10067043.201301031]
 FENG Chengxu,XU Jianghu,LUO Yasong.Frequencydomain equalization algorithm to eliminate redundant circular prefix for OFDM underwater acoustic communications[J].hebgcdxxb,2014,(05):482.[doi:10.3969/j.issn.10067043.201301031]
[8]孙宗鑫,于洋,周锋,等.不同海底地形下海洋信道对水声通信的影响[J].哈尔滨工程大学学报,2015,(05):628.[doi:10.3969/j.issn.1006-7043.201311089]
 SUN Zongxin,YU Yang,ZHOU Feng,et al.The impact of the channels to underwater acoustic communications with different seabed topographies[J].hebgcdxxb,2015,(05):628.[doi:10.3969/j.issn.1006-7043.201311089]
[9]范巍巍,张殿伦,董继刚,等.AUV水声跳频通信调制解调器的设计与实现[J].哈尔滨工程大学学报,2014,(12):1473.[doi:10.3969/j.issn.1006-7043.201309055]
 FAN Weiwei,ZHANG Dianlun,DONG Jigang,et al.Design and implementation of AUV underwater acoustic frequency hopping communication modem[J].hebgcdxxb,2014,(05):1473.[doi:10.3969/j.issn.1006-7043.201309055]
[10]孙琳,李海森,董照琦,等.基于TR-STBC的MIMO水声通信方法[J].哈尔滨工程大学学报,2016,37(03):355.[doi:10.11990/jheu.201408029]
 SUN Lin,LI Haisen,DONG Zhaoqi,et al.Multi-input-multi-output acoustic communications using time-reversal space-time block coding[J].hebgcdxxb,2016,37(05):355.[doi:10.11990/jheu.201408029]
[11]生雪莉,阮业武,殷敬伟,等.单矢量时反自适应多通道误差反馈的判决反馈均衡技术[J].哈尔滨工程大学学报,2018,39(12):1894.[doi:10.11990/jheu.201708007]
 SHENG Xueli,RUAN Yewu,YIN Jingwei,et al.The equalization technology of adaptive multi-channel decision-feedback equalization using error feedback with time reversal based on single vector[J].hebgcdxxb,2018,39(05):1894.[doi:10.11990/jheu.201708007]

备注/Memo

备注/Memo:
收稿日期:2018-3-13。
基金项目:国家自然科学基金项目(61531012,61601134);黑龙江省自然科学基金项目(JC2016013).
作者简介:张殿伦,男,教授,博士生导师;张友文,男,副教授,博士生导师.
通讯作者:张友文,E-mail:zhangyouwen@hrbeu.edu.cn
更新日期/Last Update: 2019-05-14