[1]陈先兵,高璞珍,王强,等.自然循环流动沸腾逆流实验研究[J].哈尔滨工程大学学报,2019,40(09):1589-1594.[doi:10.11990/jheu.201803048]
 CHEN Xianbing,GAO Puzhen,WANG Qiang,et al.An experimental investigation of flow reversal under natural circulation flow boiling[J].hebgcdxxb,2019,40(09):1589-1594.[doi:10.11990/jheu.201803048]
点击复制

自然循环流动沸腾逆流实验研究(/HTML)
分享到:

《哈尔滨工程大学学报》[ISSN:1006-6977/CN:61-1281/TN]

卷:
40
期数:
2019年09期
页码:
1589-1594
栏目:
出版日期:
2019-09-05

文章信息/Info

Title:
An experimental investigation of flow reversal under natural circulation flow boiling
作者:
陈先兵 高璞珍 王强 王忠乙 黄莹
哈尔滨工程大学 核安全与仿真技术国防重点学科实验室, 黑龙江 哈尔滨 150001
Author(s):
CHEN Xianbing GAO Puzhen WANG Qiang WANG Zhongyi HUANG Ying
Fundamental Science on Nuclear Safety and Simulation Technology Laboratory, Harbin Engineering University, Harbin 150001, China
关键词:
自然循环流动沸腾不稳定性逆流间歇干涸临界热流密度两相流常规通道流型
分类号:
TL334
DOI:
10.11990/jheu.201803048
文献标志码:
A
摘要:
为了研究加热通道中逆流的特征和机理,本文进行了低压高入口过冷度下的自然循环实验。通过采用逐渐增加实验热流密度的方法,在自然循环流动沸腾实验中识别了3种自然循环模式:稳态自然循环、流动不稳定性(无逆流)和逆流。对比实验热流密度和经验关系式计算的临界热流密度预测值,解释了逆流的机理:流动不稳定性诱发了间歇干涸型沸腾临界,间歇干涸导致了逆流的产生。分析了自然循环工况和回路结构对逆流的影响,并结合实验段出口水温波动、壁温分布和间歇干涸的发生建立了流动不稳定性工况下实验段内的流型,单相流体和两相混合物的交替通过加热段出口。本文给出不同热流密度下的自然循环模式,可为自然循环系统的设计和安全分析提供参考。

参考文献/References:

[1] BOURE J A, BERGLES A E, TONG L S. Review of two-phase flow instability[J]. Nuclear engineering and design, 1973, 25(2):165-192.
[2] KAKAC S, BON B. A review of two-phase flow dynamic instabilities in tube boiling systems[J]. International journal of heat and mass transfer, 2008, 51(3/4):399-433.
[3] 杨瑞昌, 王彦武, 王飞, 等. 自然循环过冷沸腾流动不稳定性的实验研究[J]. 核动力工程, 2005, 26(4):317-322.YANG Ruichang, WANG Yanwu, WANG Fei, et al. Experimental study of flow instability in a natural circulation system with sub-cooled boiling[J]. Nuclear power engineering, 2005, 26(4):317-322.
[4] SHI Shanbin, HIBIKI T, ISHⅡ M. Startup instability in natural circulation driven nuclear reactors[J]. Progress in nuclear energy, 2016, 90:140-150.
[5] SHI Shanbin, ISHⅡ M. Modeling of flashing-induced flow instabilities for a natural circulation driven novel modular reactor[J]. Annals of nuclear energy, 2017, 101:215-225.
[6] SHI Shanbin, SCHLEGEL J P, BROOKS C S, et al. Experimental investigation of natural circulation instability in a BWR-type small modular reactor[J]. Progress in nuclear energy, 2015, 85:96-107.
[7] YU Zhiting, YUAN Hongsheng, CHEN Chong, et al. Two-phase flow instabilities of forced circulation at low pressure in a rectangular mini-channel[J]. International journal of heat and mass transfer, 2016, 98:438-447.
[8] KUANG Y W, WANG W, MIAO J Y, et al. Flow boiling of ammonia and flow instabilities in mini-channels[J]. Applied thermal engineering, 2017, 113:831-842.
[9] KUANG Yiwu, WANG Wen, MIAO Jianyin, et al. Theoretical analysis and modeling of flow instability in a mini-channel evaporator[J]. International journal of heat and mass transfer, 2017, 104:149-162.
[10] WANG Guodong, CHENG Ping. An experimental study of flow boiling instability in a single microchannel[J]. International communications in heat and mass transfer, 2008, 35(10):1229-1234.
[11] 郭予飞, 苏光辉, 喻真烷, 等. 低压低含汽率工况下两相自然循环流动不稳定的实验研究[J]. 核科学与工程, 1999, 19(2):137-141.GUO Yufei, SU Guanghui, YU Zhenwan, et al. Experimental study on two-phase natural circulation flow instability under low pressure and low steam quality[J]. Chinese journal of nuclear science and engineering, 1999, 19(2):137-141.
[12] JAIN K C, PETRICK M, MILLER D, et al. Self-sustained hydrodynamic oscillations in a natural-circulation boiling water loop[J]. Nuclear engineering and design, 1966, 4(3):233-252.
[13] WANG Q, CHEN X J, KAKA? S, et al. An experimental investigation of density-wave-type oscillations in a convective boiling upflow system[J]. International journal of heat and fluid flow, 1994, 15(3):241-246.
[14] STEINKE M E, KANDLIKAR S G. Flow boiling and pressure drop in parallel flow microchannels[C]//Proceedings of the ASME 1st International Conference on Microchannels and Minichannels. Rochester, New York, USA, 2003.
[15] KEW P A, CORNWELL K. Correlations for the prediction of boiling heat transfer in small-diameter channels[J]. Applied thermal engineering, 1997, 17(8):705-715.
[16] KANDLIKAR S G, GRANDE W J. Evolution of microchannel flow passages thermohydraulic performance and fabrication technology[J]. Heat transfer engineering, 2003, 24(1):3-17.
[17] CHENG P, WU H Y. Mesoscale and microscale phase-change heat transfer[J]. Advances in heat transfer, 2006, 39:461-563.
[18] UMEKAWA H, OZAWA M, MITSUNAGA T, et al. Scaling parameter of CHF under oscillatory flow conditions[J]. Heat transfer-asian research, 1999, 28(6):541-550.
[19] KIM Y I, BAEK W P, CHANG S H. Critical heat flux under flow oscillation of water at low-pressure, low-flow conditions[J]. Nuclear engineering and design, 1999, 193(1/2):131-143.
[20] OKAWA T, GOTO T, MINAMITANI J, et al. Liquid film dryout in a boiling channel under flow oscillation conditions[J]. International journal of heat and mass transfer, 2009, 52(15/16):3665-3675.
[21] ZHAO D W, SU G H, LIANG Z H, et al. Experimental research on transient critical heat flux in vertical tube under oscillatory flow condition[J]. International journal of multiphase flow, 2011, 37(9):1235-1244.
[22] GROENEVELD D C, SHAN J Q, VASI? A Z, et al. The 2006 CHF look-up table[J]. Nuclear engineering and design, 2007, 237(15/16/17):1909-1922.

相似文献/References:

[1]田兆斐,赵 强,彭敏俊,等.自然循环与强迫循环转换过渡过程研究[J].哈尔滨工程大学学报,2010,(10):0.
 TIAN Zhao-fei,ZHAO Qiang,PENG Min-jun,et al.Study on transient characteristics of transition between natural circulation and forced circulation[J].hebgcdxxb,2010,(09):0.
[2]高璞珍,张文超,谭思超,等.摇摆条件下自然循环复合型脉动的同步化分析[J].哈尔滨工程大学学报,2012,(11):1346.[doi:10.3969/j.issn.1006-7043.201202041]
 GAO Puzhen,ZHANG Wenchao,TAN Sichao,et al.Synchronization analysis of natural circulation complex pulsation under rolling motion[J].hebgcdxxb,2012,(09):1346.[doi:10.3969/j.issn.1006-7043.201202041]
[3]孙丽颖,李铁磊.制冷剂自然循环能量回收装置的智能仿真 [J].哈尔滨工程大学学报,2013,(08):984.[doi:10.3969/j.issn.10067043. 201212114]
[4]封贝贝,杨星团,姜胜耀.起伏强度和周期对自然循环流动特性的影响[J].哈尔滨工程大学学报,2015,(04):448.[doi:10.3969/j.issn.1006-7043.201412060]
 FENG Beibei,YANG Xingtuan,JIANG Shengyao.Effect of heaving strength and cycle on natural circulation flow characteristics[J].hebgcdxxb,2015,(09):448.[doi:10.3969/j.issn.1006-7043.201412060]
[5]刘宇生,李聪新,温丽晶,等.压力容器外部冷却自然循环比例分析[J].哈尔滨工程大学学报,2017,38(02):318.[doi:10.11990/jheu.201511057]
 LIU Yusheng,LI Congxin,WEN Lijing,et al.Scaling analysis of natural circulation for external cooling of a reactor vessel[J].hebgcdxxb,2017,38(09):318.[doi:10.11990/jheu.201511057]
[6]俞胜之,阎昌琪,王建军,等.摇摆对单相自然循环系统流动特性的影响分析[J].哈尔滨工程大学学报,2017,38(07):1065.[doi:10.11990/jheu.201605055]
 YU Shengzhi,YAN Changqi,WANG Jianjun,et al.Analysis of the effect of rolling motion on flow characteristics of a single-phase natural circulation system[J].hebgcdxxb,2017,38(09):1065.[doi:10.11990/jheu.201605055]
[7]田春平,阎昌琪,曹夏昕,等.自然循环窄矩形通道内单相水对流传热特性[J].哈尔滨工程大学学报,2017,38(10):1554.[doi:10.11990/jheu.201607033]
 TIAN Chunping,YAN Changqi,CAO Xiaxin,et al.Convectional heat transfer characteristics of single-phase natural circulation flow in a narrow rectangular channel[J].hebgcdxxb,2017,38(09):1554.[doi:10.11990/jheu.201607033]
[8]陈凯伦,阎昌琪,孟兆明,等.套管式换热元件内流动不稳定性研究[J].哈尔滨工程大学学报,2018,39(05):870.[doi:10.11990/jheu.201701006]
 CHEN Kailun,YAN Changqi,MENG Zhaoming,et al.Flow instabilities in a thimble-based heat transfer element[J].hebgcdxxb,2018,39(09):870.[doi:10.11990/jheu.201701006]
[9]程坤,谭思超.海洋条件下反应堆热工水力特性研究进展[J].哈尔滨工程大学学报,2019,40(04):655.[doi:10.11990/jheu.201811023]
 CHENG Kun,TAN Sichao.Research progress of nuclear reactor thermal-hydraulic characteristics under ocean conditions[J].hebgcdxxb,2019,40(09):655.[doi:10.11990/jheu.201811023]
[10]刘宇生,许超,谭思超,等.整体试验台架非能动换热器的比例模化及设计[J].哈尔滨工程大学学报,2019,40(03):449.[doi:10.11990/jheu.201710048]
 LIU Yusheng,XU Chao,TAN Sichao,et al.Scaling analysis and design of passive heat exchanger in integral effect test facility[J].hebgcdxxb,2019,40(09):449.[doi:10.11990/jheu.201710048]

备注/Memo

备注/Memo:
收稿日期:2018-03-14。
基金项目:国家自然科学基金项目(11605033);核能安全劳氏基金项目.
作者简介:陈先兵,男,博士研究生;高璞珍,女,教授,博士生导师.
通讯作者:高璞珍,E-mail:gaopuzhen@hrbeu.edu.cn.
更新日期/Last Update: 2019-09-06