[1]陈文科,靳伍银,曹卉,等.复合梯形压电悬臂梁能量收集器的特性研究[J].哈尔滨工程大学学报,2019,40(06):1175-1181.[doi:10.11990/jheu.201803080]
 CHEN Wenke,JIN Wuyin,CAO Hui,et al.Characteristics of an energy harvester with composite trapezoidal piezoelectric cantilever beams[J].hebgcdxxb,2019,40(06):1175-1181.[doi:10.11990/jheu.201803080]
点击复制

复合梯形压电悬臂梁能量收集器的特性研究(/HTML)
分享到:

《哈尔滨工程大学学报》[ISSN:1006-6977/CN:61-1281/TN]

卷:
40
期数:
2019年06期
页码:
1175-1181
栏目:
出版日期:
2019-06-05

文章信息/Info

Title:
Characteristics of an energy harvester with composite trapezoidal piezoelectric cantilever beams
作者:
陈文科 靳伍银 曹卉 王安
兰州理工大学 机电工程学院, 甘肃 兰州 730050
Author(s):
CHEN Wenke JIN Wuyin CAO Hui WANG An
School of Mechanical and Electrical Engineering, Lanzhou University of Technology, Lanzhou 730050, China
关键词:
梯形悬臂梁能量收集器附加质量双压电晶片共振频率传递函数宽频压电陶瓷发电效率
分类号:
TB123;TN712.5
DOI:
10.11990/jheu.201803080
文献标志码:
A
摘要:
为了拓宽压电能量收集器的工作频带宽度并改善低幅值激励频率条件下的能量收集效率,本文将梯形悬臂梁应用到多悬臂梁压电能量收集器结构设计当中。依据梯形悬臂梁的尺寸及末端附加质量,通过双压电晶片与弹性基梁的等效化处理,计算和推导了系统的共振频率和传递函数,从而建立单梯形悬臂梁横向振动的数学模型,在此基础上分析推导了复合梯形压电能量收集系统模型。研究结果表明:复合梯形悬臂梁结构有效地拓宽了工作频带,更容易实现与环境振动频率的匹配共振从而提高发电效率。本文研究为优化多悬臂梁能量收集器的设计和应用具有重要的借鉴意义。

参考文献/References:

[1] 刘少刚, 程千驹, 赵丹, 等. 分段线性压电能量收集器机电耦合建模[J]. 哈尔滨工程大学学报, 2016, 37(11):1573-1579.LIU Shaogang, CHENG Qianju, ZHAO Dan, et al. Electromechanical coupling modeling research on the piecewise-linear piezoelectric energy harvester[J]. Journal of Harbin Engineering University, 2016, 37(11):1573-1579.
[2] 袁江波, 谢涛, 单小彪, 等. 复合型悬臂梁压电振子振动模型及发电试验研究[J]. 机械工程学报, 2010, 46(9):87-92.YUAN Jiangbo, XIE Tao, SHAN Xiaobiao, et al. Vibrated model and experiments of multiple piezoelectric cantilevers in energy harvesting[J]. Journal of mechanical engineering, 2010, 46(9):87-92.
[3] EPONIS A, MAZEIKA D, BAKANAUSKAS V. Trapezoidal cantilevers with irregular cross-sections for energy harvesting systems[J]. Applied sciences, 2017, 7(2):134.
[4] 王海, 邱皖群, 周璇, 等. 多质量块宽频压电能量收集器[J]. 压电与声光, 2015, 37(6):1003-1008.WANG Hai, QIU Wanqun, ZHOU Xuan, et al. A multiple mass broadband piezoelectric energy harvesting device[J]. Piezoelectrics & acoustooptics, 2015, 37(6):1003-1008.
[5] 刘少刚, 程千驹, 赵丹, 等. 一种宽频压电能量收集装置的建模与实验研究[J]. 振动与冲击, 2016, 35(24):27-32.LIU Shaogang, CHENG Qianju, ZHAO Dan, et al. Modeling and experiment of a piezoelectric energy harvester with wide operation bandwidth[J]. Journal of vibration and shock, 2016, 35(24):27-32.
[6] LENG Yonggang, TAN Dan, LIU Jinjun, et al. Magnetic force analysis and performance of a tri-stable piezoelectric energy harvester under random excitation[J]. Journal of sound and vibration, 2017, 406:146-160.
[7] PHU LE C, HALVORSEN E, SORÅSEN O, et al. Wideband excitation of an electrostatic vibration energy harvester with power-extracting end-stops[J]. Smart materials and structures, 2013, 22(7):075020.
[8] LI Pengwei, LIU Ying, WANG Yanfen, et al. Low-frequency and wideband vibration energy harvester with flexible frame and interdigital structure[J]. AIP advances, 2015, 5(4):047151.
[9] 展永政, 王光庆. 双自由度压电振动能量采集器的力-电输出特性分析[J]. 振动工程学报, 2014, 27(6):871-877.ZHAN Yongzheng, WANG Guangqing. Force-electrical output characteristic analysis of piezoelectric vibration energy harvester with two degrees of freedom[J]. Journal of vibration engineering, 2014, 27(6):871-877.
[10] DHAKAR L, LIU Huicong, TAY F E H, et al. A new energy harvester design for high power output at low frequencies[J]. Sensors and actuators A:physical, 2013, 199:344-352.
[11] QI Shaofan, SHUTTLEWORTH R, OLUTUNDE OYADIJI S, et al. Design of a multiresonant beam for broadband piezoelectric energy harvesting[J]. Smart materials and structures, 2010, 19(9):094009.
[12] ESMAEILI A, SOUSA J M M. Power density ratio optimization of bimorph piezocomposite energy harvesters using a multidisciplinary design feasible method[J]. Composite structures, 2017, 165:171-179.
[13] XUE Huan, HU Yuantai, WANG Qingming. Broadband piezoelectric energy harvesting devices using multiple bimorphs with different operating frequencies[J]. IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 2008, 55(9):2104-2108.
[14] AYED S B, NAJAR F, ABDELKEFI A. Shape improvement for piezoelectric energy harvesting applications[C]//Proceedings of the 3rd International Conference on Signals, Circuits and Systems. Medenine, Tunisia, 2010:1-6.
[15] BAKER J, ROUNDY S, WRIGHT P. Alternative geometries for increasing power density in vibration energy scavenging for wireless sensor networks[C]//Proceedings of the 3rd International Energy Conversion Engineering Conference. San Francisco, California, 2005:5617.
[16] MUTHALIF A G A, DIYANA NORDIN N H. Optimal piezoelectric beam shape for single and broadband vibration energy harvesting:modeling, simulation and experimental results[J]. Mechanical systems and signal processing, 2015, 54-55:417-426.
[17] HOSSEINI R, HAMEDI M. An investigation into resonant frequency of trapezoidal V-shaped cantilever piezoelectric energy harvester[J]. Microsystem technologies, 2016, 22(5):1127-1134.
[18] CHEN Z S, YANG Y M, DENG G Q. Analytical and experimental study on vibration energy harvesting behaviors of piezoelectric cantilevers with different geometries[C]//Proceedings of International Conference on Sustainable Power Generation and Supply. Nanjing, China, 2009:1-6.
[19] AYED S B, ABDELKEFI A, NAJAR F, et al. Design and performance of variable-shaped piezoelectric energy harvesters[J]. Journal of intelligent material systems and structures, 2014, 25(2):174-186.
[20] MATOVA S P, RENAUD M, JAMBUNATHAN M, et al. Effect of length/width ratio of tapered beams on the performance of piezoelectric energy harvesters[J]. Smart materials and structures, 2013, 22(7):075015.
[21] SHAHRUZ S M. Design of mechanical band-pass filters with large frequency bands for energy scavenging[J]. Mechatronics, 2006, 16(9):523-531.
[22] KARNOVSKY I A, LEBED O I. Free vibrations of beams and frames[M]. New York:McGraw-Hill, 2004:186-189.
[23] SCHACHTELE J, GOLL E, MURALT P, et al. Admittance matrix of a trapezoidal piezoelectric heterogeneous bimorph[J]. IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 2012, 59(12):2765-2776.

备注/Memo

备注/Memo:
收稿日期:2018-03-21。
基金项目:国家自然科学基金项目(11372122);甘肃省科技计划(1610RJYA020).
作者简介:陈文科,男,博士研究生;靳伍银,男,研究员,博士生导师.
通讯作者:靳伍银,E-mail:wuyinjin@hotmail.com.
更新日期/Last Update: 2019-06-03