[1]张强,李盼池.进化策略自主选择的改进混洗蛙跳算法[J].哈尔滨工程大学学报,2019,40(05):979-985.[doi:10.11990/jheu.201803086]
 ZHANG Qiang,LI Panchi.An improved shuffled frog leaping algorithm for the autonomous selection of evolutionary strategies[J].hebgcdxxb,2019,40(05):979-985.[doi:10.11990/jheu.201803086]
点击复制

进化策略自主选择的改进混洗蛙跳算法(/HTML)
分享到:

《哈尔滨工程大学学报》[ISSN:1006-6977/CN:61-1281/TN]

卷:
40
期数:
2019年05期
页码:
979-985
栏目:
出版日期:
2019-05-05

文章信息/Info

Title:
An improved shuffled frog leaping algorithm for the autonomous selection of evolutionary strategies
作者:
张强 李盼池
东北石油大学 计算机与信息技术学院, 黑龙江 大庆 163318
Author(s):
ZHANG Qiang LI Panchi
School of Computer and Information Technology, Northeast Petroleum University, Daqing 163318, China
关键词:
混洗蛙跳算法进化策略上限置信区间变异优化模因演算群体智能自适应
分类号:
TP301.6
DOI:
10.11990/jheu.201803086
文献标志码:
A
摘要:
针对经典混合蛙跳优化算法寻优精度不高和易陷入局部收敛区域的缺点,本文提出一种基于进化策略自主选择的混洗蛙跳算法。算法中最差个体根据不同知识来源采取4种进化策略,每次迭代通过计算每种进化策略的立即价值、未来价值和综合奖励来决定最差个体的进化方式,并通过个体进化策略概率变异算法来提升寻优速度和避免陷入局部最优解。利用10个Benchmark函数对本文算法与8种进化算法进行性能比较。实验表明:所提的算法能较好地平衡全局探索能力和局部挖掘能力,可以用较少的迭代次数获取较优结果,具有很好的收敛速度和精度。

参考文献/References:

[1] EUSUFF M M, LANSEY K E. Optimization of water distribution network design using the shuffled frog leaping algorithm[J]. Journal of water resources planning and management, 2003, 129(3):210-225.
[2] ELBELTAGI E, HEGAZY T, GRIERSON D. Comparison among five evolutionary-based optimization algorithms[J]. Advanced engineering informatics, 2005, 19(1):43-53.
[3] AMIRI B, FATHIAN M, MAROOSI A. Application of shuffled frog-leaping algorithm on clustering[J]. The international journal of advanced manufacturing technology, 2009, 45(1/2):199-209.
[4] ROY P, ROY P, CHAKRABARTI A. Modified shuffled frog leaping algorithm with genetic algorithm crossover for solving economic load dispatch problem with valve-point effect[J]. Applied soft computing, 2013, 13(11):4244-4252.
[5] LI Junqing, PAN Quanke, XIE Shengxian. An effective shuffled frog-leaping algorithm for multi-objective flexible job shop scheduling problems[J]. Applied mathematics and computation, 2012, 218(18):9353-9371.
[6] 王丽萍, 孙平, 蒋志强, 等. 基于并行云变异蛙跳算法的梯级水库优化调度研究[J]. 系统工程理论与实践, 2015, 35(3):790-798. WANG Liping, SUN Ping, JIANG Zhiqiang, et al. Study on cascade reservoirs optimal operation based on parallel normal cloud mutation shuffled frog leaping algorithm[J]. Systems engineering-theory & practice, 2015, 35(3):790-798.
[7] 刘洲洲, 王福豹. 改进的离散混合蛙跳算法压缩感知信号重构及应用[J]. 吉林大学学报(工学版), 2016, 46(4):1261-1268. LIU Zhouzhou, WANG Fubao. Improvement of discrete shuffled frog-leaping algorithm and application in compressed sensing reconstruction[J]. Journal of Jilin University (engineering and technology edition), 2016, 46(4):1261-1268.
[8] 马洪斌, 佟庆彬, 张亚男. 优化参数的变分模态分解在滚动轴承故障诊断中的应用[J]. 中国机械工程, 2018, 29(4):390-397. MA Hongbin, TONG Qingbin, ZHANG Ya’nan. Applications of optimization parameters VMD to fault diagnosis of rolling bearings[J]. China mechanical engineering, 2018, 29(4):390-397.
[9] LIU Chao, NIU Peifeng, LI Guoqiang, et al. Enhanced shuffled frog-leaping algorithm for solving numerical function optimization problems[J]. Journal of intelligent manufacturing, 2018, 29(5):1133-1153.
[10] AHANDANI M A, ALAVI-RAD H. Opposition-based learning in shuffled frog leaping:an application for parameter identification[J]. Information sciences, 2015, 291:19-42.
[11] ELBELTAGI E, HEGAZY T, GRIERSON D. A modified shuffled frog-leaping optimization algorithm:applications to project management[J]. Structure and infrastructure engineering, 2007, 3(1):53-60.
[12] AGHABABA M P, AKBARI M E, SHOTORANI A M, et al. Application of modified shuffled frog leaping algorithm for robot optimal controller design[J]. International journal of scientific & engineering research, 2011, 2(11):1-6.
[13] JABALLAH S, ROUIS K, ABDALLAH F B, et al. An improved shuffled frog leaping algorithm with a fast search strategy for optimization problems[C]//Proceedings of the 2014 IEEE 10th International Conference on Intelligent Computer Communication and Processing. Cluj Napoca, Romania, 2014:23-27.
[14] 肖莹莹, 林廷宇, 李伯虎, 等. 混合蛙跳算法自适应参数调整改进策略[J]. 系统工程与电子技术, 2016, 38(8):1939-1950. XIAO Yingying, LIN Tingyu, LI Bohu, et al. Improvement strategy of adaptive parameter adjustment for shuffled frog leaping algorithm[J]. Systems engineering and electronics, 2016, 38(8):1939-1950.
[15] SAMUEL G G, RAJAN C C A. Hybrid:particle swarm optimization-genetic algorithm and particle swarm optimization-shuffled frog leaping algorithm for long-term generator maintenance scheduling[J]. International journal of electrical power & energy systems, 2015, 65:432-442.
[16] SHARMA T K, PANT M. Shuffled artificial bee colony algorithm[J]. Soft computing, 2017, 21(20):6085-6104.
[17] 黄柳玉, 高淑萍, 王军宁, 等. 基于差分进化的混合蛙跳算法[J]. 系统工程与电子技术, 2017, 39(10):2382-2392. HUANG Liuyu, GAO Shuping, WANG Junning, et al. Hybrid frog leaping algorithm based on differential evolution[J]. Systems engineering and electronics, 2017, 39(10):2382-2392.
[18] SUN Ping, JIANG Zhiqiang, WANG Tingting, et al. Research and application of parallel normal cloud mutation shuffled frog leaping algorithm in cascade reservoirs optimal operation[J]. Water resources management, 2016, 30(3):1019-1035.
[19] ZHAO Zhuanzhe, XU Qingsong, JIA Minping. Improved shuffled frog leaping algorithm-based BP neural network and its application in bearing early fault diagnosis[J]. Neural computing and applications, 2016, 27(2):375-385.
[20] AUER P, CESA-BIANCHI N, FISCHER P. Finite-time analysis of the multiarmed bandit problem[J] Machine learning, 2002, 47(2/3):235-256.
[21] STURTEVANT N R. An analysis of UCT in multi-player games[C]//Proceedings of the 6th International Conference on Computers and Games. Beijing, China, 2008:37-49.
[22] PRICE K, STORN R, LAMPINEN J. Differential Evolution:a practical approach to global optimization[M]. Heidelberg:Springer, 2005.
[23] SHI Y, EBERHART R C. Empirical study of particle swarm optimization[C]//Proceeding of 1999 Congress on Evolutionary Computation-CEC99. Washington, 1999:1945-1950.

备注/Memo

备注/Memo:
收稿日期:2018-3-22。
基金项目:国家自然科学基金项目(61702093);黑龙江省自然科学基金项目(F2018003).
作者简介:张强,男,副教授;李盼池,男,教授,博士生导师.
通讯作者:张强,E-mail:dqpi_zq@163.com
更新日期/Last Update: 2019-05-14