[1]林阿强,郑群,张海,等.射流冷却对航空发动机压气机的特性分析[J].哈尔滨工程大学学报,2019,40(09):1608-1615.[doi:10.11990/jheu.201804021]
 LIN Aqiang,ZHENG Qun,ZHANG Hai,et al.Analysis of mass injection cooling on aero-engine compressor characteristics[J].hebgcdxxb,2019,40(09):1608-1615.[doi:10.11990/jheu.201804021]
点击复制

射流冷却对航空发动机压气机的特性分析(/HTML)
分享到:

《哈尔滨工程大学学报》[ISSN:1006-6977/CN:61-1281/TN]

卷:
40
期数:
2019年09期
页码:
1608-1615
栏目:
出版日期:
2019-09-05

文章信息/Info

Title:
Analysis of mass injection cooling on aero-engine compressor characteristics
作者:
林阿强 郑群 张海 姜玉廷
哈尔滨工程大学 动力与能源工程学院, 黑龙江 哈尔滨 150001
Author(s):
LIN Aqiang ZHENG Qun ZHANG Hai JIANG Yuting
College of Power and Energy Engineering, Harbin Engineering University, Harbin 150001, China
关键词:
高马赫数航空发动机压气机特性预冷段蒸发冷却高温进气
分类号:
V235.1
DOI:
10.11990/jheu.201804021
文献标志码:
A
摘要:
针对高马赫数下航空发动机高温进气问题,本文建立了高空环境下预冷段-压气机内气雾蒸发冷却的数学模型。基于欧拉-拉格朗日多相流数值方法分析了不同喷雾条件和高空环境时压气机特性变化。结果表明:在高空高马赫数环境下,喷水冷却可以增加进气流量、抑制温升、增大总压比;在一定范围内较大的喷水量和较小的液滴尺寸,有利于降低总温比、提高总压比,同时有利于降低压气机压缩耗功及增加效率。因此,航空发动机压气机前增设进气预冷段进行射流冷却,可以有效改善压气机的工作特性。

参考文献/References:

[1] 邹正平, 刘火星, 唐海龙, 等. 高超声速航空发动机强预冷技术研究[J]. 航空学报, 2015, 36(8):2544-2562.ZOU Zhengping, LIU Huoxing, TANG Hailong, et al. Precooling technology study of hypersonic aeroengine[J]. Acta aeronautica et astronautica sinica, 2015, 36(8):2544-2562.
[2] WANG Zhenguo, WANG Yuan, ZHANG Jianqiang, et al. Overview of the key technologies of combined cycle engine precooling systems and the advanced applications of micro-channel heat transfer[J]. Aerospace science and technology, 2014, 39:31-39.
[3] PRESTON C, VLADIMIR B, TERRY S, et al. MIPCC technology development[C]//12th AIAA International Space Planes and Hypersonic Systems and Technologies. Reston, 2003.
[4] SIVO J N, WANHAINEN J P, JONES W L. The effect of compressor-inlet water injection on engine and afterburner performance. NACA-RM-E58d03b[R]. Cleveland, Ohio:Lewis Flight Propulsion Laboratory, 1958.
[5] KELLE D E, KUCZERA H. Saenger space transportation system - progress report[J]. Space technology, 1992, 12(4):353-367.
[6] CARTER P, BALEPIN V. Mass injection and precompressor cooling engines analyses[C]//38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Indianapolis, Indiana, 2002.
[7] BALEPIN V, LISTON G. The steamJetTM:Mach 6+ turbine engine with inlet air conditioning[C]//37th Joint Propulsion Conference and Exhibit. Salt Lake City, UT, 2001.
[8] LIN Aqiang, ZHENG Qun, JIANG Yuting, et al. Sensitivity of air/mist non-equilibrium phase transition cooling to transient characteristics in a compressor of gas turbine[J]. International journal of heat and mass transfer, 2019, 137:882-894.
[9] 柴柏青, 徐国印, 郑群, 等. 湿压缩过程中水滴的运动分析[J]. 哈尔滨工程大学学报, 2017, 38(2):222-229.CHAI Baiqing, XU Guoyin, ZHENG Qun, et al. Motion analysis of water droplets during wet compression[J]. Journal of Harbin Engineering University, 2017, 38(2):222-229.
[10] WHITE A J, MEACOCK A J. Wet compression analysis including velocity slip effects[C]//Proceedings of ASME Turbo Expo 2010:Power for Land, Sea, and Air. Glasgow, UK, 2010:953-963.
[11] NEUPERT N, OBER B, JOOS F. Experimental investigation on droplet behavior in a transonic compressor cascade[J]. Journal of turbomachinery, 2014, 137(3):031009.
[12] LIN Aqiang, SUN Yonggang, ZHANG Hai, et al. Fluctuating characteristics of air-mist mixture flow with conjugate wall-film motion in a compressor of gas turbine[J]. Applied thermal engineering, 2018, 142:779-792.
[13] KIM K H, PEREZ-BLANCO H. An assessment of high-fogging potential for enhanced compressor performance[C]//ASME Turbo Expo 2006:Power for Land, Sea, and Air. Barcelona, Spain, 2006.
[14] WHITE A J, MEACOCK A J. An evaluation of the effects of water injection on compressor performance[J]. Journal of engineering for gas turbines and power, 2004, 126(4):748-754.
[15] LIN Aqiang, ZHOU Jie, FAWZY H, et al. Evaluation of mass injection cooling on flow and heat transfer characteristics for high-temperature inlet air in a MIPCC engine[J]. International journal of heat and mass transfer, 2019, 135:620-630.
[16] MOORE R D, REID L. Performance of single-stage axial-flow transonic compressor rotor and stator aspect ratios of 1.19 and 1.26 respectively, and with design pressure ratio of 2.05. NASA TP-1659[R]. NASA, 1980.
[17] LIU Chunlei, ZHENG Qun, WANG Qi, et al. Sensitivity analysis of multistage compressor characteristics under the spray atomization effect using a CFD model[J]. Energies, 2019, 12(2):301.
[18] JIANG Yuting, ZHENG Qun, DONG Ping, et al. Conjugate heat transfer analysis of leading edge and downstream mist-air film cooling on turbine vane[J]. International journal of heat and mass transfer, 2015, 90:613-626.
[19] LIN A Q, ZHOU J, TIAN X J, et al. Effective boundary conditions and numerical method for flow characteristics of aeroengine compressor at high Mach flight[J]. Journal of applied fluid mechanics, 2019, 12(3):845-855.

相似文献/References:

[1]胡杰鑫,谢里阳,邢宇,等.基于FMECA的自动绘制故障树方法[J].哈尔滨工程大学学报,2017,38(07):1162.[doi:10.11990/jheu.201604024]
 HU Jiexin,XIE Liyang,XING Yu,et al.FMECA-based FTA automatic fault tree drafting[J].hebgcdxxb,2017,38(09):1162.[doi:10.11990/jheu.201604024]
[2]金业壮,王德友,闻邦椿.航空发动机双转子系统碰摩故障的仿真研究[J].哈尔滨工程大学学报,2017,38(12):1872.[doi:10.11990/jheu.201703060]
 JIN Yezhuang,WANG Deyou,WEN Bangchun.Dynamic simulation on double-rotor system of aeroengine with rubbing fault[J].hebgcdxxb,2017,38(09):1872.[doi:10.11990/jheu.201703060]

备注/Memo

备注/Memo:
收稿日期:2018-04-08。
基金项目:国家自然科学基金项目(51809065);中央高校基本科研业务费专项资金项目(3072019GIP0304;3072019CFJ0309).
作者简介:林阿强,男,博士研究生;郑群,男,教授,博士生导师.
通讯作者:郑群,E-mail:zhengqun@hrbeu.edu.cn.
更新日期/Last Update: 2019-09-06