[1]夏波,黄筱云,陈同庆,等.Level set函数快速步进并行重构的分区优化[J].哈尔滨工程大学学报,2019,40(09):1601-1607.[doi:10.11990/jheu.201804027]
 XIA Bo,HUANG Xiaoyun,CHEN Tongqing,et al.Optimized domain decomposition for parallel reconstruction of the Level set function by fast marching method[J].hebgcdxxb,2019,40(09):1601-1607.[doi:10.11990/jheu.201804027]
点击复制

Level set函数快速步进并行重构的分区优化(/HTML)
分享到:

《哈尔滨工程大学学报》[ISSN:1006-6977/CN:61-1281/TN]

卷:
40
期数:
2019年09期
页码:
1601-1607
栏目:
出版日期:
2019-09-05

文章信息/Info

Title:
Optimized domain decomposition for parallel reconstruction of the Level set function by fast marching method
作者:
夏波1 黄筱云12 陈同庆2 程永舟1 江诗群1
1. 长沙理工大学 水利工程学院, 湖南 长沙 410114;
2. 大连理工大学 海岸和近海工程国家重点实验室, 辽宁 大连 116024
Author(s):
XIA Bo1 HUANG Xiaoyun12 CHEN Tongqing2 CHENG Yongzhou1 JIANG Shiqun1
1. School of Hydraulic Engineering, Changsha University of Science and Technology, Changsha 410114, China;
2. State Key Laboratory of Coastal and offshore Engineering, Dalian University of Technology, Dalian 116024, China
关键词:
Level set函数快速步进法并行重构分区优化交界面共享存储并行编程多线程技术加速比
分类号:
TV131.2
DOI:
10.11990/jheu.201804027
文献标志码:
A
摘要:
为进一步提升Level set函数重构的分区并行重构效率,本文采用均分交界面方式进行分区,并保证生成内边界重构节点数量最少。通过运用基于共享存储并行编程(OpenMP)多线程技术的并行计算模型,实现圆球、Zalesak球和哑铃等值面的并行重构。计算结果表明:新分区方法能平衡子区域间计算荷载,减少子区域间信息传递次数和节点回滚次数,与均分区域方法相比,新分区方法能够获得更高计算速度,具有更好的实用性和可扩展性。

参考文献/References:

[1] HUANG Xiaoyun, LI Shaowu. A two-dimensional numerical wave flume based on SA-MPLS method[J]. Acta oceanologica sinica, 2012, 31(3):18-30.
[2] LI Shaowu, ZHUANG Qian, HUANG Xiaoyun, et al. 3D simulation of flow with free surface based on adaptive octree mesh system[J]. Transactions of Tianjin University, 2015, 21(1):32-40.
[3] CUBOS-RAMíREZ J M, RAMíREZ-CRUZ J, SALINAS-VáZQUEZ M, et al. Efficient two-phase mass-conserving level set method for simulation of incompressible turbulent free surface flows with large density ratio[J]. Computers & fluids, 2016, 136:212-227.
[4] MCSHERRY R J, CHUA K V, STOESSER T. Large eddy simulation of free-surface flows[J]. Journal of hydrodynamics, series B, 2017, 29(1):1-12.
[5] CHOPP D L. Computing minimal surfaces via level set curvature flow[J]. Journal of computational physics, 1993, 106(1):77-91.
[6] SUSSMAN M, SMEREKA P, OSHER S. A level set approach for computing solutions to incompressible two-phase flow[J]. Journal of computational physics, 1994, 114(1):146-159.
[7] RUSSO G, SMEREKA P. A remark on computing distance functions[J]. Journal of computational physics, 2000, 163(1):51-67.
[8] ENRIGHT D, FEDKIW R, FERZIGER J, et al. A hybrid particle level set method for improved interface capturing[J]. Journal of computational physics, 2002, 183(1):83-116.
[9] HARTMANN D, MEINKE M, SCHR?DER W. Differential equation based constrained reinitialization for level set methods[J]. Journal of computational physics, 2008, 227(14):6821-6845.
[10] SALIH A, GHOSH MOULIC S. A mass conservation scheme for level set method applied to multiphase incompressible flows[J]. International journal for computational methods in engineering science and mechanics, 2013, 14(4):271-289.
[11] SABELNIKOV V, OVSYANNIKOV A Y, GOROKHOVSKI M. Modified level set equation and its numerical assessment[J]. Journal of computational physics, 2014, 278:1-30.
[12] TSITSIKLIS J N. Efficient algorithms for globally optimal trajectories[J]. IEEE transactions on automatic control, 1995, 40(9):1528-1538.
[13] SETHIAN J A. Fast marching methods[J]. SIAM review, 1999, 41(2):199-235.
[14] CHOPP D L. Some improvements of the fast marching method[J]. SIAM journal on scientific computing, 2001, 23(1):230-244.
[15] ENRIGHT D, LOSASSO F, FEDKIW R. A fast and accurate semi-Lagrangian particle level set method[J]. Computers & structures, 2005, 83(6/7):479-490.
[16] HASSOUNA M S, FARAG A A. MultiStencils fast marching methods:a highly accurate solution to the Eikonal equation on Cartesian domains[J]. IEEE transactions on pattern analysis and machine intelligence, 2007, 29(9):1563-1574.
[17] TSAI Y H R, CHENG L T, OSHER S, et al. Fast sweeping algorithms for a class of Hamilton-Jacobi equations[J]. SIAM journal on numerical analysis, 2003, 41(2):673-694.
[18] ZHAO Hongkai. Parallel implementations of the fast sweeping method[J]. Journal of computational mathematics, 2007, 25(4):421-429.
[19] QIAN Jianliang, ZHANG Yongtao, ZHAO Hongkai. Fast sweeping methods for Eikonal equations on triangular meshes[J]. SIAM journal on numerical analysis, 2007, 45(1):83-107.
[20] LI Fengyan, SHU Chiwang, ZHANG Yongtao, et al. A second order discontinuous Galerkin fast sweeping method for Eikonal equations[J]. Journal of computational physics, 2008, 227(17):8191-8208.
[21] DETRIXHE M, GIBOU F, MIN C. A parallel fast sweeping method for the Eikonal equation[J]. Journal of computational physics, 2013, 237:46-55.
[22] HERRMANN M. A domain decomposition parallelization of the fast marching method annual research briefs[R]. Stanford, CA:Center for Turbulence Research, 2003:253-261.
[23] 黄筱云, 董国海, 赵利平, 等. Level set函数重新初始化的并行快速步进法[J]. 哈尔滨工程大学学报, 2016, 37(5):666-671, 689.HUANG Xiaoyun, DONG Guohai, ZHAO Liping, et al. A parallelized fast marching method for reinitialization of level set function[J]. Journal of Harbin Engineering University, 2016, 37(5):666-671, 689.
[24] 黄筱云, 董国海, 常佳夫, 等. Level set函数快速步进重构并行算法的改进[J]. 哈尔滨工程大学学报, 2017, 38(6):836-842.HUANG Xiaoyun, DONG Guohai, CHANG Jiafu, et al. Improvement of parallel fast marching method for reconstruction of level set function[J]. Journal of Harbin Engineering University, 2017, 38(6):836-842.
[25] LOSASSO F, FEDKIW R, OSHER S. Spatially adaptive techniques for level set methods and incompressible flow[J]. Computers & fluids, 2006, 35(10):995-1010.

相似文献/References:

[1]黄筱云,董国海,常佳夫,等.Level set函数快速步进重构并行算法的改进[J].哈尔滨工程大学学报,2017,38(06):836.[doi:10.11990/jheu.201604048]
 HUANG Xiaoyun,DONG Guohai,CHANG Jiafu,et al.Improvement of parallel fast marching method for reconstruction of level set function[J].hebgcdxxb,2017,38(09):836.[doi:10.11990/jheu.201604048]
[2]黄筱云,董国海,赵利平,等.Level set函数重新初始化的并行快速步进法[J].哈尔滨工程大学学报,2016,37(05):666.[doi:10.11990/jheu.201502005]
 HUANG Xiaoyun,DONG Guohai,ZHAO Liping,et al.A parallelized fast marching method for reinitialization of level set function[J].hebgcdxxb,2016,37(09):666.[doi:10.11990/jheu.201502005]

备注/Memo

备注/Memo:
收稿日期:2018-04-11。
基金项目:国家自然科学基金项目(51679015);中国博士后科学基金项目(2014M561230);大连理工大学海岸和近海工程国家重点实验室开放基金项目(LP1511)
作者简介:夏波,男,讲师,博士;黄筱云,男,副教授.
通讯作者:黄筱云,E-mail:Xiaoyun.huang@csust.edu.cn.
更新日期/Last Update: 2019-09-06