[1]修文翠,吴化,韩英,等.超级贝氏体组织中的应力诱发相变研究[J].哈尔滨工程大学学报,2019,40(06):1115-1121.[doi:10.11990/jheu.201804083]
 XIU Wencui,WU Hua,HAN Ying,et al.Stress-induced phase transformation of super bainite microstructure[J].hebgcdxxb,2019,40(06):1115-1121.[doi:10.11990/jheu.201804083]
点击复制

超级贝氏体组织中的应力诱发相变研究(/HTML)
分享到:

《哈尔滨工程大学学报》[ISSN:1006-6977/CN:61-1281/TN]

卷:
40
期数:
2019年06期
页码:
1115-1121
栏目:
出版日期:
2019-06-05

文章信息/Info

Title:
Stress-induced phase transformation of super bainite microstructure
作者:
修文翠12 吴化1 韩英1 郭明阳3 刘云旭1
1. 长春工业大学 先进结构材料省部共建教育部重点实验室, 吉林 长春 130012;
2. 吉林农业科技学院 机械与土木工程学院, 吉林 吉林 132101;
3. 吉林麦达斯铝业有限公司, 吉林 辽源 136200
Author(s):
XIU Wencui12 WU Hua1 HAN Ying1 GUO Mingyang3 LIU Yunxu1
1. Key Laboratory of Advanced Structural Materials of Ministry of Education, Changchun University of Technology, Changchun 130012, China;
2. School of Mechanical and Civil Engineering, Jilin Agricultural Science and Technology University, Jilin 132101, China;
3. Jilin Midas Aluminium Co. Ltd., Liaoyuan 136200, China
关键词:
超级贝氏体残余奥氏体应力诱发相变疲劳载荷强塑积等温处理贝氏体铁素体化学势
分类号:
TG113
DOI:
10.11990/jheu.201804083
文献标志码:
A
摘要:
为了研究钢中超级贝氏体产生应力诱发相变对其组织和力学性能的影响,将60Mn2SiCr钢经完全奥氏体化后,在250℃~270℃盐浴炉中等温处理获得超级贝氏体,并通过在疲劳试验机上施加不同的拉-拉交变载荷来探讨其对实验钢力学性能的影响。使用SEM、TEM和XRD对样品分别进行组织形貌观察和相组成的确定。显微组织中部分残余奥氏体发生应力诱发相变,转变为孪晶马氏体,致使钢的强塑积提高近32.4%。结果表明:超级贝氏体中的部分残余奥氏体能够通过产生应力诱发相变改善钢的强韧性。

参考文献/References:

[1] HAN Ying, WU Hua, LIU Cheng, et al. Microstructures and mechanical characteristics of a medium carbon super-bainitic steel after isothermal transformation[J]. Journal of materials engineering and performance, 2014, 23(12):4230-4236.
[2] HASE K, GARCIA-MATEO C, BHADESHIA H K D H. Bimodal size-distribution of bainite plates[J]. Materials science and engineering:A, 2006, 438-440:145-148.
[3] BHADESHIA H K D H. Comments on "Bainite formation kinetics in high carbon alloyed steel"[J]. Scripta materialia, 2008, 59(12):1275-1276.
[4] BHADESHIA H K D H. Properties of fine-grained steels generated by displacive transformation[J]. Materials science and engineering:A, 2008, 481-482:36-39.
[5] PODDER A S, BHADESHIA H K D H. Thermal stability of austenite retained in bainitic steels[J]. Materials science and engineering:A, 2010, 527(7/8):2121-2128.
[6] SOLIMAN M, MOSTAFA H, EL-SABBAGH A S, et al. Low temperature bainite in steel with 0.26 wt% C[J]. Materials science and engineering:A, 2010, 527(29/30):7706-7713.
[7] BHADESHIA H K D H. Bainitic bulk-nanocrystalline steel[C]//Proceedings of the 3rd International Conference on Advanced Structural Steels. Gyeongju, Korea, 2006.
[8] CABALLERO F G, BHADESHIA H K D H. Very strong bainite[J]. Current opinion in solid state and materials science, 2004, 8(3/4):251-257.
[9] BHADESHIA H K D H. Hard bainite[M]//HOWE J M, LAUGHLIN D E, LEE J K, et al. Solid-Solid Phase Transformations. Warrendale:TMS, 2005:469-484.
[10] CABALLERO F G, SANTOFIMIA M J, GARCÍA-MATEO C, et al. Theoretical design and advanced microstructure in super high strength steels[J]. Materials & design, 2009, 30(6):2077-2083.
[11] 张宇光, 赵爱民, 赵征志, 等. 冷轧TRIP钢中残余奥氏体的热稳定性[J]. 机械工程学报, 2011, 47(4):66-70.ZHANG Yuguang, ZHAO Aimin, ZHAO Zhengzhi, et al. Thermal stability of retained austenite in TRIP-aided cold-rolled steel[J]. Journal of mechanical engineering, 2011, 47(4):66-70.
[12] ZACKAY V F, BHANDARKAR M D, PARKER E R. The role of deformation-induced phase transformations in the plasticity of some iron-base alloys[M]//BURKE J J, WEISS V. Advances in Deformation Processing. Boston:Springer, 1978:351-404.
[13] 吴化. 低合金高强度高塑性复相钢材的成分设计[D]. 上海:东华大学, 2007.WU Hua. Composition design of low alloy high strength and plasticity complex phases steels[D]. Shanghai:Donghua University, 2007.
[14] WU Hua, LIU Cheng, ZHAO Zhenbo, et al. Design of air-cooled bainitic microalloyed steel for a heavy truck front axle beam[J]. Materials & design, 2006, 27(8):651-656.
[15] YOOZBASHI M N, YAZDANI S. Mechanical properties of nanostructured, low temperature bainitic steel designed using a thermodynamic model[J]. Materials science and engineering:A, 2010, 527(13/14):3200-3205.
[16] KRAUSS G. Steels:heat treatment and processing principles[M]. Materials Park, OH:ASM International, 1990.
[17] LUO Yi, PENG Jinmin, WANG Hongbin, et al. Effect of tempering on microstructure and mechanical properties of a non-quenched bainitic steel[J]. Materials science and engineering:A, 2010, 527(15):3433-3437.
[18] 杨福宝, 白秉哲, 刘东雨, 等. 无碳化物贝氏体/马氏体复相高强度钢的组织与性能[J]. 金属学报, 2004, 40(3):296-300.YANG Fubao, BAI Bingzhe, LIU Dongyu, et al. Microstructure and properties of a carbide-free bainite/martensite ultra-high strength steel[J]. Acta metallurgica sinica, 2004, 40(3):296-300.
[19] 郭明阳, 吴化, 修文翠, 等. Q&P工艺对60Mn2SiCr钢中超级贝氏体组织转变的影响[J]. 材料热处理学报, 2015, 36(12):168-172.GUO Mingyang, WU Hua, XIU Wencui, et al. Effect of Q&P process on transformation of super-bainite microstructure in 60Mn2SiCr steel[J]. Transactions of materials and heat treatment, 2015, 36(12):168-172.
[20] LI Wansong, GAO Hongye, LI Zhongyi, et al. Effect of lower bainite/martensite/retained austenite triplex microstructure on the mechanical properties of a low-carbon steel with quenching and partitioning process[J]. International journal of minerals, metallurgy, and materials, 2016, 23(3):303-313.
[21] MISRA A, SHARMA S, SANGAL S, et al. Critical isothermal temperature and optimum mechanical behaviour of high Si-containing bainitic steels[J]. Materials science and engineering:A, 2012, 558:725-729.
[22] 范雄. 金属X射线学[M]. 北京:机械工业出版社, 1989.FAN Xiong. Metallic X-ray physics[M]. Beijing:China Machine Press, 1989.
[23] 蔡珣. 材料科学与工程基础[M]. 上海:上海交通大学出版社, 2010.CAI Xun. Fundamentals of materials science and engineering[M]. Shanghai:Shanghai Jiao Tong University Press, 2010.
[24] 赵乃勤. 合金固态相变[M]. 长沙:中南大学出版社, 2008.ZHAO Naiqin. Solid phase transformations in alloys[M]. Changsha:Central South University Press, 2008.
[25] 刘云旭. 金属热处理原理[M]. 北京:机械工业出版社, 1981.LIU Yunxu. Principles of metal heat treatment[M]. Beijing:China Machine Press, 1981.
[26] STRINGFELLOW R G, PARKS D M, OLSON G B. A constitutive model for transformation plasticity accompanying strain-induced martensitic transformations in metastable austenitic steels[J]. Acta metallurgica et materialia, 1992, 40(7):1703-1716.
[27] 高绪涛, 赵爱民, 赵征志, 等. 热轧TRIP钢残余奥氏体及其稳定性研究[J]. 材料工程, 2011(11):39-43.GAO Xutao, ZHAO Aimin, ZHAO Zhengzhi, et al. Investigation of retained austenite and its stability in hot rolled TRIP steel[J]. Materials engineering, 2011(11):39-43.
[28] MANDAL D, GHOSH M, PAL J, et al. Effect of austempering treatment on microstructure and mechanical properties of high-Si steel[J]. Journal of materials science, 2009, 44(4):1069-1075.
[29] XIU Wencui, HAN Ying, LIU Cheng, et al. Cyclic stress induced phase transformation in super-bainitic microstructure[J]. Chinese physics B, 2017, 26(3):038101.

备注/Memo

备注/Memo:
收稿日期:2018-04-23。
基金项目:国家自然科学基金项目(51171030);吉林农业科技学院青年基金项目(2017214);现代农业机械化与信息化创新团队资金.
作者简介:修文翠,女,讲师,博士研究生;吴化,男,教授,博士生导师.
通讯作者:吴化,E-mail:wuhua@ccut.edu.cn.
更新日期/Last Update: 2019-06-03