[1]孙青林,陈赛,孙昊,等.复杂扰动下的动力翼伞轨迹跟踪控制[J].哈尔滨工程大学学报,2019,40(07):1319-1326.[doi:10.11990/jheu.201805007]
 SUN Qinglin,CHEN Sai,SUN Hao,et al.Trajectory tracking control of powered parafoil under complex disturbances[J].hebgcdxxb,2019,40(07):1319-1326.[doi:10.11990/jheu.201805007]
点击复制

复杂扰动下的动力翼伞轨迹跟踪控制(/HTML)
分享到:

《哈尔滨工程大学学报》[ISSN:1006-6977/CN:61-1281/TN]

卷:
40
期数:
2019年07期
页码:
1319-1326
栏目:
出版日期:
2019-07-05

文章信息/Info

Title:
Trajectory tracking control of powered parafoil under complex disturbances
作者:
孙青林1 陈赛1 孙昊1 陈增强1 孙明玮1 檀盼龙2
1. 南开大学 人工智能学院, 天津 300350;
2. 天津中德应用技术大学 智能制造学院, 天津 300350
Author(s):
SUN Qinglin1 CHEN Sai1 SUN Hao1 CHEN Zengqiang1 SUN Mingwei1 TAN Panlong2
1. College of Artificial Intelligence, Nankai University, Tianjin 300350, China;
2. Intelligent Manufacturing College, Tianjin Sino-German University of Applied Science, Tianjin 300350, China
关键词:
动力翼伞系统负载转矩风场扰动舵机模型串级控制自抗扰控制轨迹跟踪
分类号:
V249.1;TP29
DOI:
10.11990/jheu.201805007
文献标志码:
A
摘要:
针对动力翼伞系统易受舵机负载转矩和外界风场等复杂扰动影响的问题,本文改进动力翼伞系统模型,引入具有负载转矩的直流电机模型。提出了基于自抗扰控制的轨迹跟踪控制器,分别设计了横纵向通道控制器,横向轨迹通道采用串级自抗扰控制,内环控制器对舵机负载扰动进行估计和补偿,减小死区误差;外环控制器跟踪参考飞行方向,降低风扰影响。半实物仿真结果表明:该控制策略性能优于传统自抗扰控制(ADRC)和PID控制器,能有效抑制舵机负载和风场扰动,提高跟踪精度,且稳定性和鲁棒性显著增强。

参考文献/References:

[1] YAKIMENKO O A. Precision aerial delivery systems:modeling, dynamics, and control[M]. Reston, VA:AIAA, 2015.
[2] ZHANG Limin, GAO Haitao, CHEN Zengqiang, et al. Multi-objective global optimal parafoil homing trajectory optimization via Gauss pseudospectral method[J]. Nonlinear dynamics, 2013, 72(1/2):1-8, DOI:10.1007/s11071-012-0586-9.
[3] LIU Hua, GUO Lei, ZHANG Yumin. An anti-disturbance PD control scheme for attitude control and stabilization of flexible spacecrafts[J]. Nonlinear dynamics, 2012, 67(3):2081-2088, DOI:10.1007/s11071-011-0130-3.
[4] 韩雅慧, 杨春信, 肖华军, 等. 翼伞精确空投系统关键技术和发展趋势[J]. 兵工自动化, 2012, 31(7):1-7, DOI:10.3969/j.issn.1006-1576.2012.07.001.HAN Yahui, YANG Chunxin, XIAO Huajun, et al. Review on key technology and development of parafoil precise airdrop systems[J]. Ordnance industry automation, 2012, 31(7):1-7, DOI:10.3969/j.issn.1006-1576.2012.07.001.
[5] ZHU Erlin, SUN Qinglin, TAN Panlong, et al. Modeling of powered parafoil based on Kirchhoff motion equation[J]. Nonlinear dynamics, 2015, 79(1):617-629. DOI:10.1007/s11071-014-1690-9.
[6] WATANABE M, OCHI Y. Modeling and simulation of nonlinear dynamics of a powered paraglider[C]//Proceedings of the AIAA Guidance, Navigation and Control Conference and Exhibit. Honolulu, Hawaii:AIAA, 2008:1-16. DOI:10.2514/6.2008-7418.
[7] 朱二琳, 张兴会. 翼伞空投系统模糊控制器的设计与实现[J]. 电子测量技术, 2011, 34(4):46-49, 97. DOI:10.19651/j.cnki.emt.2011.04.013.ZHU Erlin, ZHANG Xinghui. Design and application of fuzzy controller in parafoil airdrop system[J]. Electronic measurement technology, 2011, 34(4):46-49, 97. doi:10.19651/j.cnki.emt.2011.04.013.
[8] HATTIS P, CAMPBELL D, CARTER D, et al. Providing means for precision airdrop delivery from high altitude[C]//Proceedings of AIAA Guidance, Navigation, and Control Conference and Exhibit. Keystone, Colorado:AIAA, 2013. DOI:10.2514/6.2006-6790.
[9] SLEGERS N, COSTELLO M. Model predictive control of a parafoil and payload system[J]. Journal of guidance, control, and dynamics, 2005, 28(4):816-821. DOI:10.2514/1.12251.
[10] 梁海燕, 任志刚, 许超, 等. 翼伞系统最优归航轨迹设计的敏感度分析方法[J]. 控制理论与应用, 2015, 32(8):1003-1011. DOI:10.7641/CTA.2015.40855.LIANG Haiyan, REN Zhichao, XU Chao, et al. Optimal homing trajectory design for parafoil systems using sensitivity analysis approach[J]. Control theory & applications, 2015, 32(8):1003-1011. DOI:10.7641/CTA.2015.40855.
[11] 谢亚荣. 空投任务下翼伞建模与飞行控制研究[D]. 南京:南京航空航天大学, 2011. DOI:10.7666/d.d166701.XIE Yarong. Research on modeling and flight control of parafoil under the airdrop mission[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2011. DOI:10.7666/d.d166701.
[12] GRIGNION D, CHEN Xiang, KAR N, et al. Estimation of load disturbance torque for DC motor drive systems under robustness and sensitivity consideration[J]. IEEE transactions on industrial electronics, 2014, 61(2):930-942. DOI:10.1109/tie.2013.2257138.
[13] HAN Jingqing. From PID to active disturbance rejection control[J]. IEEE transactions on industrial electronics, 2009, 56(3):900-906.DOI:10.1109/TIE.2008.2011621.
[14] XUE Wenchao, BAI Wenyan, YANG Sheng, et al. ADRC With adaptive extended state observer and its application to air-fuel ratio control in gasoline engines[J]. IEEE transactions on industrial electronics, 2015, 62(9):5847-5857. DOI:10.1109/TIE.2015.2435004.
[15] TAO Jin, SUN Qinglin, TAN Panlong, et al. Active disturbance rejection control (ADRC)-based autonomous homing control of powered parafoils[J]. Nonlinear dynamics, 2016, 86(3):1461-1476. DOI:10.1007/s11071-016-2972-1.
[16] 熊菁. 翼伞系统动力学与归航方案研究[D]. 长沙:国防科学技术大学, 2005.XIONG Jing. Research on the dynamics and homing project of parafoil system[D]. Changsha:National University of Defense Technology, 2005.
[17] GAO Zhiqiang. Active disturbance rejection control:A paradigm shift in feedback control system design[C]//2006 American Control Conference. Minneapolis, MN, USA:IEEE, 2006. DOI:10.1109/ACC.2006.1656579.
[18] ZHENG Qing, DONG Lili, LEE D H, et al. Active disturbance rejection control for MEMS gyroscopes[J]. IEEE transactions on control systems technology, 2009, 17(6):1432-1438. DOI:10.1109/TCST.2008.2008638.
[19] ADELFANG S, SMITH O. Gust models for launch vehicle ascent[C]//Proceedings of the 36th AIAA Aerospace Sciences Meeting and Exhibit. Reno, NV, U.S.A:AIAA, 1998. DOI:10.2514/6.1998-747.

备注/Memo

备注/Memo:
收稿日期:2018-05-02。
基金项目:国家自然科学基金项目(61273138,61573197);国家科技支撑计划课题(2015BAK06B04);天津市科技支撑计划重点项目(14ZCZDSF00022);天津市教委科研计划项目(2017KJ044).
作者简介:孙青林,男,教授,博士生导师.
通讯作者:孙青林,E-mail:sunql@nankai.edu.cn
更新日期/Last Update: 2019-07-04