[1]姜劲,孙科,郑雄波.半潜型垂直轴风机纵荡下气动载荷特性[J].哈尔滨工程大学学报,2019,40(06):1084-1089.[doi:10.11990/jheu.201805018]
 JIANG Jin,SUN Ke,ZHENG Xiongbo.Aerodynamic load characteristics of vertical axis semi-submerged floating wind turbine under surge motion[J].hebgcdxxb,2019,40(06):1084-1089.[doi:10.11990/jheu.201805018]
点击复制

半潜型垂直轴风机纵荡下气动载荷特性(/HTML)
分享到:

《哈尔滨工程大学学报》[ISSN:1006-6977/CN:61-1281/TN]

卷:
40
期数:
2019年06期
页码:
1084-1089
栏目:
出版日期:
2019-06-05

文章信息/Info

Title:
Aerodynamic load characteristics of vertical axis semi-submerged floating wind turbine under surge motion
作者:
姜劲1 孙科2 郑雄波3
1. 金陵科技学院 机电工程学院, 江苏 南京 211169;
2. 哈尔滨工程大学 船舶与海洋工程学院, 黑龙江 哈尔滨 150001;
3. 哈尔滨工程大学 理学院, 黑龙江 哈尔滨 150001
Author(s):
JIANG Jin1 SUN Ke2 ZHENG Xiongbo3
1. Jinling Institute of Technology, School of Mechanical and Electrical Engineering, Nanjing 211169, China;
2. College of Shipbuilding Engineering, Harbin Engineering University, Harbin 150001, China;
3. College of Science, Harbin Engineering University, Harbin 150001, China
关键词:
垂直轴海上风机半潜式平台运动响应气动载荷纵荡耦合运动数值仿真
分类号:
TK89;P762
DOI:
10.11990/jheu.201805018
文献标志码:
A
摘要:
为了研究半潜式垂直轴浮式风机纵荡运动对风机气动载荷的影响,本文建立了5MW浮式风机、平台、系泊系统全非线性耦合的计算模型,采用流体固体交互方法和重叠网格技术对风浪双激励下平台纵荡运动时的风机气动载荷进行分析,研究了不同速比下纵荡运动对转矩系数、叶片推力系数、能量利用率的变化规律,并与相同速比下陆地垂直轴风机进行比较。结果表明:高速比下平台以较高纵荡均值做高频小幅振荡;回复运动时转矩系数大于正向运动时转矩系数;能量利用率系数在中低速比时大于陆地风机;叶片推力系数和转矩系数变化趋势相同。本文的研究结论对于分析浮式风力机叶片载荷和估算深远海风场年发电量具有理论指导意义。

参考文献/References:

[1] Lauha Fried. Global wind statistics 2016[EB/OL]. Belgium:Global Wind Energy Council.[2017-12-11]. http://www.gwec.net/wp-content/uploads/vip/GWEC_PRstats2016_EN_WEB.pdf.
[2] BACHYNSKI E E, MOAN T. Design considerations for tension leg platform wind turbines[J]. Marine structures, 2012, 29(1):89-114.
[3] 尚景宏, 赵玉娜, 张亮, 等. Spar型海上浮式风力机系统运动耦合计算方法[J]. 哈尔滨工程大学学报, 2016, 37(9):1163-1171.SHANG Jinghong, ZHAO Yuna, ZHANH Liang, et al. Coupled method for predicting motions of Spar-type offshore floating wind turbine systems[J]. Journal of Harbin Engineering University, 2016, 37(9):1163-1171.
[4] 焦忠虎,肖纪升. 海上风力发电基础形式及关键技术分析[J]. 中国高新技术企业,2016(1):145-146.JIAO Zhonghu, XIAO Jisheng. Analysis on the floating foundation type and key technology of offshore wind turbine[J]. China high-tech enterprises, 2016(1):145-146.
[5] 吴海涛, 张亮, 马勇, 等. 半潜式海上浮式风力机平台随机响应特性分析[J]. 华中科技大学学报(自然科学版), 2014, 42(5):111-115, 121.WU Haitao, ZHANG Liang, MA Yong, et al. Stochastic response characteristics analysis of semisubmersible platform for floating offshore wind turbine[J]. Journal of Huazhong University of Science and Technology (natural science edition), 2014, 42(5):111-115, 121.
[6] 刘中柏,唐友刚,王涵,等. 半潜型风电浮式基础运动特性试验研究[J]. 哈尔滨工程大学学报,2015,36(1):51-56.LIU Zhongbai, TANG Yougang, WANG Han, et al. Experimental study of motion behaviors for semi-submersible floating foundation of wind power[J]. Journal of Harbin Engineering University, 2015, 36(1):51-56.
[7] TARN T T, KIM D H. The coupled dynamic response computation for a semi-submersible platform of floating offshore wind turbine[J]. Journal of wind engineering and industrial aerodynamics, 2015, 147:104-119.
[8] TARN T T, KIM D H. Fully coupled aero-hydrodynamic analysis of a semi-submersible FOWT using a dynamic fluid body interaction approach[J]. Renewable energy, 2016, 92:244-261.
[9] BORG M, SHIRES A, COLLU M. Offshore floating vertical axis wind turbines, dynamics modelling state of the art. PartⅠ:aerodynamics[J]. Renewable and sustainable energy reviews, 2014, 39:1214-1225.
[10] LEI Hang, ZHOU Dai, LU Jiabao, et al. The impact of pitch motion of a platform on the aerodynamic performance of a floating vertical axis wind turbine[J]. Energy, 2017, 119:369-383.
[11] WANG Kai, MOAN T, HANSEN M O L. Stochastic dynamic response analysis of a floating vertical-axis wind turbine with a semi-submersible floater[J]. Wind energy, 2016, 19(10):1853-1870.
[12] 姜劲. 竖轴叶轮的流体动力分析与性能优化方法的改进与应用[D]. 哈尔滨:哈尔滨工程大学, 2012:37-39.JIANG Jin. Fluid dynamic analysis and optimization method for vertical-axis turbine:improvement and application[D]. Harbin:Harbin Engineering University, 2012:37-39.
[13] KVITTEM M I, BACHYNSKI E E, MOAN T. Effects of hydrodynamic modelling in fully coupled simulations of a semi-submersible wind turbine[J]. Energy procedia, 2012, 24:351-362.
[14] COULLING A J, GOUPEE A J, ROBERTSON A N, et al. Validation of a FAST semi-submersible floating wind turbine numerical model with deepcwind test data[J]. Journal of renewable and sustainable energy, 2013, 5(2):023116.
[15] JONKMAN J, BUTTERFIELD S, MUSIAL W, et al. Definition of a 5-MW reference wind turbine for offshore system development. NREL/TP-500-38060[R]. Golden, Colorado, US:National Renewable Energy Laboratory, 2009.
[16] 张珅榕, 蔡卫军, 闵景新. 基于欧拉多相流模型的空泡数值模拟[J]. 船海工程, 2015, 44(1):103-106, 111.ZHANG Shenrong, CAI Weijun, MIN Jingxin. Numerical simulation of cavity based on Eulerian multiphase model[J]. Ship & ocean engineering, 2015, 44(1):103-106, 111.
[17] 胡国玉, 孙文磊, 曹莉. 风力机三维旋转叶片非定常气动特性数值模拟研究[J]. 可再生能源, 2016, 34(6):867-871.HU Guoyu, SUN Wenlei, GAO Li. Numerical simulation of unsteady aerodynamic characteristics of wind turbine rotational blade[J]. Renewable energy resources, 2016, 34(6):867-871.
[18] ELGAMMI M, SANT T. Integrating a new flow separation model and the effects of the vortex shedding for improved dynamic stall predictions using the Beddoes-Leishman method[J]. Wind energy, 2016, 19(11):2089-2112.
[19] 高慧, 张照刚, 熊高涵. 粘性流体数值波浪水池研究[J]. 舰船科学技术, 2017, 39(11):44-47.GAO Hui, ZHANG Zhaogang, XIONG Gaohan. Study of numerical wave tank for viscous fluid[J]. Ship science and technology, 2017, 39(11):44-47.

相似文献/References:

[1]张学伟,张亮,李志川,等.潮流能自由变偏角水轮机限位角优化方法[J].哈尔滨工程大学学报,2012,(11):1341.[doi:10.3969/j.issn.1006-7043. 201201022]
 ZHANG Xuewei,ZHANG Liang,LI Zhichuan,et al.Optimization of limit angle for free variable-pitchvertical axis tidal turbine[J].hebgcdxxb,2012,(06):1341.[doi:10.3969/j.issn.1006-7043. 201201022]
[2]唐友刚,桂龙,曹菡,等.海上风机半潜式基础概念设计与水动力性能分析[J].哈尔滨工程大学学报,2014,(11):1314.[doi:10.3969/j.issn.1006-7043.201303003]
 TANG Yougang,GUI Long,CAO Han,et al.Conceptual design and hydrodynamic performance of the semi-submersible floating foundation for wind turbines[J].hebgcdxxb,2014,(06):1314.[doi:10.3969/j.issn.1006-7043.201303003]
[3]孙丽萍,康济川,刘子健,等.海上风机的模糊关联失效模式及其影响分析[J].哈尔滨工程大学学报,2016,37(04):487.[doi:10.11990/jheu.201504006]
 SUN Liping,KANG Jichuan,LIU Zijian,et al.Fuzzy theory-based correlated FMEA of offshore wind turbines[J].hebgcdxxb,2016,37(06):487.[doi:10.11990/jheu.201504006]
[4]潘祖兴,吴关叶,赵生校.四腿桁架式海上风机基础结构优化设计[J].哈尔滨工程大学学报,2018,39(04):644.[doi:10.11990/jheu.201610044]
 PAN Zuxing,WU Guanye,ZHAO Shengxiao.Optimized design of foundation of four-legged truss-type offshore wind turbine[J].hebgcdxxb,2018,39(06):644.[doi:10.11990/jheu.201610044]

备注/Memo

备注/Memo:
收稿日期:2018-05-07。
基金项目:国家自然科学基金项目(51761135013);工信部高技术船舶科研项目(201622);江苏省自然科学基金项目(BK20161103、BK20170119).
作者简介:姜劲,男,副教授;孙科,女,副教授.
通讯作者:孙科,E-mail:sunke@hrbeu.edu.cn.
更新日期/Last Update: 2019-06-03