[1]张友文,石绍琦,黄福朋,等.移动单载波水声通信中的有效空时处理技术[J].哈尔滨工程大学学报,2019,40(04):641-648.[doi:10.11990/jheu.201805021]
 ZHANG Youwen,SHI Shaoqi,HUANG Fupeng,et al.Efficient spatial and temporal processing for highly mobile single-carrier underwater acoustic communications[J].hebgcdxxb,2019,40(04):641-648.[doi:10.11990/jheu.201805021]
点击复制

移动单载波水声通信中的有效空时处理技术(/HTML)
分享到:

《哈尔滨工程大学学报》[ISSN:1006-6977/CN:61-1281/TN]

卷:
40
期数:
2019年04期
页码:
641-648
栏目:
出版日期:
2019-04-05

文章信息/Info

Title:
Efficient spatial and temporal processing for highly mobile single-carrier underwater acoustic communications
作者:
张友文123 石绍琦123 黄福朋123 孙大军123
1. 哈尔滨工程大学 水声技术重点实验室, 黑龙江 哈尔滨 150001;
2. 哈尔滨工程大学 海洋信息获取与安全工信部重点实验室, 黑龙江 哈尔滨 150001;
3. 哈尔滨工程大学 水声工程学院, 黑龙江 哈尔滨 150001
Author(s):
ZHANG Youwen123 SHI Shaoqi123 HUANG Fupeng123 SUN Dajun123
1. Acoustic Science and Technology Laboratory, Harbin Engineering University, Harbin 150001, China;
2. Key Laboratory of Marine Information Acquisition and Security(Harbin Engineering University), Ministry of Industry and Information Technology, Harbin 150001, China;
3. College of Underwater Acoustic Engineering, Harbin Engineering University, Harbin 150001, China
关键词:
水声通信空间预综合技术宽带信号多普勒补偿自适应并行信道估计自适应RLS算法相位追踪判决反馈均衡器最小均方误差
分类号:
TN911.5;TB567
DOI:
10.11990/jheu.201805021
文献标志码:
A
摘要:
针对宽带多普勒补偿的问题,本文提出了一种基于自适应宽带多普勒补偿技术的有效空时接收机技术,该接收机由自适应空间预综合器、多路插值器和基于信道估计的多路等效自适应判决反馈均衡器组成;本文提出的接收机结构在保证接收机性能的前提下,利用空间预综合器降低了接收机处理复杂度;采用联合自适应宽带多普勒补偿、自适应信道估计与均衡技术利用最小均方误差准则更新接收机系数,提高自适应接收机在移动条件下的稳健性。湖试试验验证了本文接收机的有效性,试验结果表明:本文提出的接收机结构可以有效补偿高速移动通信信号的宽带多普勒效应,实现高速移动平台间水声通信。

参考文献/References:

[1] EGGEN T H, BAGGEROER A B, PREISIG J C. Communication over Doppler spread channels. Part I:Channel and receiver presentation[J]. IEEE journal of oceanic engineering, 2001, 25(1):62-71.
[2] 田坦. 声呐技术[M]. 2版. 哈尔滨:哈尔滨工程大学出版社, 2010:23-27.
[3] JOHNSON M, FREITAG L, STOJANOVIC M. Improved Doppler tracking and correction for underwater acoustic communications[C]//Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing. Munich, Germany, 1997:575-578.
[4] STOJANOVIC M, CATIPOVIC J A, PROAKIS J G. Phase-coherent digital communications for underwater acoustic channels[J]. IEEE journal of oceanic engineering, 1994, 19(1):100-111.
[5] STOJANOVIC M, CATIPOVIC J, PROAKIS J G. Adaptive multichannel combining and equalization for underwater acoustic communications[J]. The journal of the acoustical society of America, 1993, 94(3):1621-1631.
[6] STOJANOVIC M, CATIPOVIC J A, PROAKIS J G. Reduced-complexity spatial and temporal processing of underwater acoustic communication signals[J]. The journal of the acoustical society of America, 1995, 98(2):961-972.
[7] STOJANOVIC M. Efficient processing of acoustic signals for high-rate information transmission over sparse underwater channels[J]. Physical communication, 2008, 1(2):146-161.
[8] SHARIF B S, NEASHAM J, HINTON O R, et al. A computationally efficient Doppler compensation system for underwater acoustic communications[J]. IEEE journal of oceanic engineering, 2000, 25(1):52-61.
[9] SHARIF B S, NEASHAM J, HINTON O R, et al. Adaptive Doppler compensation for coherent acoustic communication[J]. IEE proceedings-radar, sonar and navigation, 2000, 147(5):239-246.
[10] SHARIF B S, NEASHAM J, HINTON O R, et al. Closed loop Doppler tracking and compensation for non-stationary underwater platforms[C]//Proceedings of the OCEANS 2000 MTS/IEEE Conference and Exhibition. Providence, RI, USA, 2000, 1:371-375.
[11] SHAH C P, TSIMENIDIS C C, SHARIF B S, et al. EXIT chart analysis of BICM-ID based receiver for shallow underwater acoustic communications[C]//Proceedings of the 2010 7th International Symposium on Wireless Communication System. York, UK, 2010:6-10.
[12] GOODFELLOW G M, NEASHAM J A, TSIMENIDIS C C, et al. High data rate acoustic link for Micro-ROVs, employing BICM-ID[C]//Proceedings of the 2012 Oceans-Yeosu. Yeosu, South Korea, 2012:1-6.
[13] SHAH C P, TSIMENIDIS C C, SHARIF B S, et al. Low-complexity iterative receiver structure for time-varying frequency-selective shallow underwater acoustic channels using BICM-ID:design and experimental results[J]. IEEE journal of oceanic engineering, 2011, 36(3):406-421.
[14] PELEKANAKIS K, CHITRE M. Robust equalization of mobile underwater acoustic channels[J]. IEEE journal of oceanic engineering, 2015, 40(4):775-784.
[15] PELEKANAKIS K, CHITRE M. Low-complexity subband equalization of mobile underwater acoustic channels[C]//Proceedings of the Oceans 2015-Genova. Genova, Italy, 2015:1-8.
[16] PELEKANAKIS K, CHITRE M. A channel-estimate-based decision feedback equalizer robust under impulsive noise[C]//Proceedings of the 2014 Underwater Communications and Networking. Sestri Levante, Italy, 2014:1-5.
[17] GOODFELLOW G M, NEASHAM J A, TSIMENIDIS C C, et al. Investigation of a full duplex acoustic link for a tetherless micro-ROV[C]//Proceedings of OCEANS 2011 IEEE-Spain. Santander, Spain, 2011:1-7.
[18] PROAKIS J G. Digital communications[M]. 4th ed. New York:McGraw-Hill, 2000.
[19] HAYKIN S. Adaptive filter theory[M]. 4th ed. NJ:Prentice-Hall Inc., 2002.
[20] PERRINE K A, NIEMAN K F, HENDERSON T L, et al. Doppler estimation and correction for shallow underwater acoustic communications[C]//Proceedings of the 2010 Conference Record of the Forty Fourth Asilomar Conference on Signals, Systems and Computers. Pacific Grove, CA, USA, 2010:746-750.
[21] PERRINE K A, NIEMAN K F, LENT K H, et al. The university of texas at austin applied research laboratories Nov. 2009 five-element acoustic underwater dataset[EB/OL].[2017-02-16]. http://users.ece.utexas.edu/~bevans/projects/underwater/datasets/.
[22] Lower Colorado River Authority. "Historical Lake Levels:Highland Lakes"[EB/OL]. http://www.lcra.org/water/conditions/historical.html.
[23] NIEMAN K F, PERRINE K A, LENT K H, et al. Multi-stage and sparse equalizer design for communication systems in reverberant underwater channels[C]//Proceedings of 2010 IEEE Workshop on Signal Processing Systems. San Francisco, CA, USA, 2010:374-379.
[24] 韩笑, 生雪莉, 殷敬伟, 等. 基于双向判决反馈均衡器的水声通信海试试验研究[J]. 兵工学报, 2016, 37(3):553-558.HAN Xiao, SHENG Xueli, YIN Jingwei, et al. Experimental demonstration of underwater acoustic communication based on bidirectional decision feedback equalizer[J]. Acta armamentarii, 2016, 37(3):553-558.
[25] 乔钢, 王巍, 刘凇佐, 等. 改进的多输入多输出正交频分复用水声通信判决反馈信道估计算法[J]. 声学学报, 2016, 41(1):95-104QIAO Gang, WANG Wei, LIU Songzuo, et al. An improved decision feedback channel estimation algorithm for multiple-output orthogonal frequency division multiplexing underwater acoustic communication[J]. Acta acustica, 2016, 41(1):95-104.

相似文献/References:

[1]桑恩方,徐小卡,乔钢,等.Turbo码在水声OFDM通信中的应用研究[J].哈尔滨工程大学学报,2009,(01):60.
 SANG Enfang,XU Xiao-ka,QIAO Gang,et al.Application study of turbo code for underwater acoustic communication based on OFDM[J].hebgcdxxb,2009,(04):60.
[2]刘凇佐,周锋,孙宗鑫,等.单矢量水听器OFDM水声通信技术实验[J].哈尔滨工程大学学报,2012,(08):941.[doi:10.3969/j.issn.1006-7043.201111055]
 LIU Songzuo,ZHOU Feng,SUN Zongxin,et al.Experimental study of OFDM underwater acoustic communication using a vector hydrophone[J].hebgcdxxb,2012,(04):941.[doi:10.3969/j.issn.1006-7043.201111055]
[3]肖东,莫福源,陈庚,等.码率可调节的高质量语音编码算法[J].哈尔滨工程大学学报,2012,(08):956.[doi:10.3969/j.issn.1006-7043.201109014]
 XIAO Dong,MO Fuyuan,CHEN Geng,et al.An adjustable bit rate high quality speech coder[J].hebgcdxxb,2012,(04):956.[doi:10.3969/j.issn.1006-7043.201109014]
[4]于洋,周锋,乔钢.小Kasami序列的正交码元移位键控扩频水声通信[J].哈尔滨工程大学学报,2014,(01):81.[doi:10.3969/j.issn.1006-7043.201303065]
 YU Yang,ZHOU Feng,QIAO Gang.Orthogonal code shift keying spread spectrum underwater acoustic communications employing the small Kasami sequence[J].hebgcdxxb,2014,(04):81.[doi:10.3969/j.issn.1006-7043.201303065]
[5]刘凇佐,刘冰洁,尹艳玲,等.M元仿海豚叫声隐蔽水声通信[J].哈尔滨工程大学学报,2014,(01):119.[doi:10.3969/j.issn.1006-7043.201306016]
 LIU SongzuoHT,LIU Bingjie,YIN Yanling,et al.M-ray covert underwater acoustic communication by mimicking dolphin sounds[J].hebgcdxxb,2014,(04):119.[doi:10.3969/j.issn.1006-7043.201306016]
[6]冯成旭,许江湖,罗亚松.消除冗余循环前缀的水声信道OFDM频域均衡算法[J].哈尔滨工程大学学报,2014,(04):482.[doi:10.3969/j.issn.10067043.201301031]
 FENG Chengxu,XU Jianghu,LUO Yasong.Frequencydomain equalization algorithm to eliminate redundant circular prefix for OFDM underwater acoustic communications[J].hebgcdxxb,2014,(04):482.[doi:10.3969/j.issn.10067043.201301031]
[7]孙宗鑫,于洋,周锋,等.不同海底地形下海洋信道对水声通信的影响[J].哈尔滨工程大学学报,2015,(05):628.[doi:10.3969/j.issn.1006-7043.201311089]
 SUN Zongxin,YU Yang,ZHOU Feng,et al.The impact of the channels to underwater acoustic communications with different seabed topographies[J].hebgcdxxb,2015,(04):628.[doi:10.3969/j.issn.1006-7043.201311089]
[8]范巍巍,张殿伦,董继刚,等.AUV水声跳频通信调制解调器的设计与实现[J].哈尔滨工程大学学报,2014,(12):1473.[doi:10.3969/j.issn.1006-7043.201309055]
 FAN Weiwei,ZHANG Dianlun,DONG Jigang,et al.Design and implementation of AUV underwater acoustic frequency hopping communication modem[J].hebgcdxxb,2014,(04):1473.[doi:10.3969/j.issn.1006-7043.201309055]
[9]孙琳,李海森,董照琦,等.基于TR-STBC的MIMO水声通信方法[J].哈尔滨工程大学学报,2016,37(03):355.[doi:10.11990/jheu.201408029]
 SUN Lin,LI Haisen,DONG Zhaoqi,et al.Multi-input-multi-output acoustic communications using time-reversal space-time block coding[J].hebgcdxxb,2016,37(04):355.[doi:10.11990/jheu.201408029]
[10]张友文,孙大军,刘璐.水声迭代接收机中的超Nyquist技术和速率兼容编码技术[J].哈尔滨工程大学学报,2016,37(04):538.[doi:10.11990/jheu.201503001]
 ZHANG Youwen,SUN Dajun,LIU Lu.Iterative receiver based on super-Nyquist and rate-compatible punctured coding techniques for underwater acoustic communication[J].hebgcdxxb,2016,37(04):538.[doi:10.11990/jheu.201503001]

备注/Memo

备注/Memo:
收稿日期:2018-05-07。
基金项目:国家自然科学基金项目(61531012,61471138);国际科技合作专项基金项目(2013DFR20050);国防基础科研项目(B2420132004).
作者简介:张友文,男,副教授,博士生导师;孙大军,男,教授,博士生导师,"长江学者"特聘教授.
通讯作者:孙大军,E-mail:sundajunmail@163.com
更新日期/Last Update: 2019-04-03