[1]齐文亮,明平剑,张文平,等.生物柴油(菜籽油)与柴油的喷雾燃烧特性研究[J].哈尔滨工程大学学报,2019,40(08):1468-1473.[doi:10.11990/jheu.201805070]
 QI Wenliang,MING Pingjian,ZHANG Wenping,et al.Investigation of the spray combustion characteristics of biodiesel (rapeseed methyl ester) and diesel[J].hebgcdxxb,2019,40(08):1468-1473.[doi:10.11990/jheu.201805070]
点击复制

生物柴油(菜籽油)与柴油的喷雾燃烧特性研究(/HTML)
分享到:

《哈尔滨工程大学学报》[ISSN:1006-6977/CN:61-1281/TN]

卷:
40
期数:
2019年08期
页码:
1468-1473
栏目:
出版日期:
2019-08-05

文章信息/Info

Title:
Investigation of the spray combustion characteristics of biodiesel (rapeseed methyl ester) and diesel
作者:
齐文亮 明平剑 张文平 赵海洋
哈尔滨工程大学 动力与能源工程学院, 黑龙江 哈尔滨 150001
Author(s):
QI Wenliang MING Pingjian ZHANG Wenping ZHAO Haiyang
College of Power and Energy Engineering, Harbin Engineering University, Harbin 150001, China
关键词:
燃油物性燃油雾化火焰浮起长度生物柴油柴油
分类号:
TK411
DOI:
10.11990/jheu.201805070
文献标志码:
A
摘要:
为了对比生物柴油与柴油在喷雾、燃烧方面的差异,本文在GTEA程序的基础上,建立了燃油雾化和燃烧数学模型,建立了柴油与生物柴油的物性库。通过液核长度和火焰浮起长度实验值与计算值的对比验证建立数学模型的准确性,同时讨论了燃油物性对燃油雾化和燃烧过程的影响,对比了柴油与生物柴油不同的雾化和燃烧特征。计算结果表明:生物柴油较大的表面张力抑制了液滴的破碎,较差的蒸发特性延缓了蒸发速率,使得液滴直径和动量较大,导致液核长度大于柴油的液核长度。尽管生物柴油与柴油的燃烧特性相似,但物性和雾化特性的差异,导致生物柴油火焰浮起长度较长。计算参数的研究表明:喷嘴直径对生物柴油液核长度和火焰浮起长度的影响更大。减小喷嘴直径可以缩短生物柴油液核长度和火焰浮起长度,有利于生物柴油在现有柴油机的应用。

参考文献/References:

[1] SELVAN T, NAGARAJAN G. Combustion and emission characteristics of a diesel engine fuelled with biodiesel having varying saturated fatty acid composition[J]. International journal of green energy, 2013, 10(9):952-965.
[2] CHAKRAVARTHY K, MCFARLANE J, DAW S, et al. Physical properties of bio-diesel and implications for use of bio-diesel in diesel engines. SAE paper, 2007-01-4030[R]. SAE, 2007.
[3] RA Y, REITZ R, MCFARLANE J, et al. Effects of fuel physical properties on diesel engine combustion using diesel and bio-diesel fuels[J]. SAE international journal of fuels and lubricants, 2008, 1(1):703-718.
[4] SOM S, LONGMAN D E, RAMÍREZ A I, et al. A comparison of injector flow and spray characteristics of biodiesel with petrodiesel[J]. Fuel, 2010, 89(12):4014-4024.
[5] ARMAS O, HERNÁNDEZ J J, CÁRDENAS M. Reduction of diesel smoke opacity from vegetable oil methyl esters during transient operation[J]. Fuel, 2006, 85(17/18):2427-2438.
[6] WU Yifeng, HUANG Ronghua, LIU Yu, et al. Effect of ambient temperature on flame lift-off and soot formation of biodiesel sprays. SAE Paper 2010-01-0606[R]. SAE, 2010.
[7] MUELLER C J, BOEHMAN A L, MARTIN G C. An experimental investigation of the origin of increased NO<i>x emissions when fueling a heavy-duty compression-ignition engine with soy biodiesel[J]. SAE international journal of fuels and lubricants, 2009, 2(1):789-816.
[8] 雷国东. 非结构网格FVM在复杂几何结构的湍流反应流计算中的应用研究[D]. 哈尔滨:哈尔滨工程大学, 2008.LEI Guodong. The application and research of the unstructured grid FVM in the turbulent reaction flows simulation with complex geometries[D]. Harbin:Harbin Engineering University, 2008.
[9] YUAN W, HANSEN A C, ZHANG Q. Vapor pressure and normal boiling point predictions for pure methyl esters and biodiesel fuels[J]. Fuel, 2005, 84(7/8):943-950.
[10] GOLOVITCHEV V I, YANG Junfeng. Construction of combustion models for rapeseed methyl ester bio-diesel fuel for internal combustion engine applications[J]. Biotechnology advances, 2009, 27(5):641-655.
[11] ALLEN C A W, WATTS K C, ACKMAN R G. Predicting the surface tension of biodiesel fuels from their fatty acid composition[J]. Journal of the American oil chemists’ society, 1999, 76(3):317-323.
[12] CHAKRAVARTHY K, MCFARLANE J, DAW S, et al. Physical properties of bio-diesel and implications for use of bio-diesel in diesel engines. SAE Papers 2007-01-4030[R]. SAE, 2007.
[13] JOHANSSON M, YANG Junfeng, OCHOTERENA R, et al. NOx and soot emissions trends for RME, SME and PME fuels using engine and spray experiments in combination with simulations[J]. Fuel, 2013, 106:293-302.
[14] 刘永丰, 明平剑, 张文平, 等. 一种固定网格上拉格朗日点追踪的快速算法[J]. 计算物理, 2010, 27(4):527-532.LIU Yongfeng, MING Pingjian, ZHANG Wenping, et al. An efficient lagrange point tracking algorithm for fixed grids[J]. Chinese journal of computational physics, 2010, 27(4):527-532.
[15] QI Wenliang, ZHANG Wenping, MING Pingjian, et al. Numerical simulation of high-pressure fuel spray by using a new hybrid breakup model[J]. Atomization and sprays, 2017, 27(12):999-1023.
[16] 齐文亮, 明平剑, 张文平, 等. 湍流扰动对液滴破碎的影响及模拟方法研究[J]. 哈尔滨工程大学学报, 2018, 39(4):709-715.QI Wenliang, MING Pingjian, ZHANG Wenping, et al. A simulation method and the effect of turbulence perturbation on droplet breakup[J]. Journal of Harbin Engineering University, 2018, 39(4):709-715.
[17] LIU A B, Mather D, REITZ R D. Modeling the effects of drop drag and breakup on fuel sprays. SAE Paper 930072[R]. SAE, 1993.
[18] NORDIN N. Complex chemistry modeling of diesel spray combustion[D]. Göteborg:Chalmers University of Technology, 2001.
[19] AMSDEN A A. KIVA-3V:a block-structured KIVA program for engines with vertical or canted valves. LA-13313-MS[R]. Los Alamos:National Laboratory, 1997.
[20] ZHANG Yanzhi, JIA Ming, LIU Hong, et al. Development of a new spray/wall interaction model for diesel spray under PCCI-engine relevant conditions[J]. Atomization and sprays, 2014, 24(1):41-80.
[21] KEE R J, RUPLEY F M, MEEKS E, et al. CHEMKIN-Ⅲ:a FORTRAN chemical kinetics package for the analysis of gas-phase chemical and plasma kinetics. Report SAND96-8216[R]. Albuquerque, New Mexico:Sandia National Laboratories, 1996.
[22] 刘耀东. 基础燃料(PRF)及汽油表征燃料(TRF)化学反应动力学骨架模型的研究[D]. 大连:大连理工大学, 2013.LIU Yaodong. Research on the development of skeletal chemical kinetic models for primary reference fuel and gasoline surrogate fuel (TRF)[D]. Dalian:Dalian University of Technology, 2013.
[23] CHANG Yachao, JIA Ming, LI Yaopeng, et al. Development of a skeletal mechanism for diesel surrogate fuel by using a decoupling methodology[J]. Combustion and flame, 2015, 162(10):3785-3802.
[24] CHANG Yachao, JIA Ming, LI Yaopeng, et al. Development of a skeletal oxidation mechanism for biodiesel surrogate[J]. Proceedings of the combustion institute, 2015, 35(3):3037-3044.
[25] DAGAUT P, GAÏL S, SAHASRABUDHE M. Rapeseed oil methyl ester oxidation over extended ranges of pressure, temperature, and equivalence ratio:Experimental and modeling kinetic study[J]. Proceedings of the combustion institute, 2007, 31(2):2955-2961.
[26] COLKET M, EDWARDS T, WILLIAMS S, et al. Development of an experimental database and kinetic models for surrogate jet fuels[C]//Proceedings of the 45th AIAA Aerospace Sciences Meeting and Exhibit. Reno, Nevada, 2007.
[27] HIGGINS B S, MUELLER C J, SIEBERS D L. Measurements of fuel effects on liquid-phase penetration in DI sprays. SAE Paper 1999-01-0519[R]. SAE, 1999.
[28] HIGGINS B S, SIEBERS D L. Measurement of the flame lift-off location on DI diesel sprays using OH chemiluminescence. SAE Paper 2001-01-0918[R]. SAE, 2001.
[29] SIEBERS D L, HIGGINS B S. Effects of injector conditions on the flame lift-off length of DI diesel sprays[R]. Albuquerque, New Mexico:Sandia National Laboratories, 2000.
[30] SOM S, AGGARWAL S K. Effects of primary breakup modeling on spray and combustion characteristics of compression ignition engines[J]. Combustion and flame, 2010, 157(6):1179-1193.

备注/Memo

备注/Memo:
收稿日期:2018-5-17。
基金项目:中央高校基本科研业务费专项资金项目(HEUCFP201711);国家留学基金项目(China Scholarship Council).
作者简介:齐文亮,男,博士研究生;明平剑,男,教授,博士生导师.
通讯作者:明平剑,E-mail:pingjianming@hrbeu.edu.cn.
更新日期/Last Update: 2019-08-05