[1]李晔,贾知浩,张伟斌,等.面向无人艇自主靠泊的分层轨迹规划与试验[J].哈尔滨工程大学学报,2019,40(06):1043-1050.[doi:10.11990/jheu.201805093]
 LI Ye,JIA Zhihao,ZHANG Weibin,et al.Layered trajectory planning and experiment for the autoberthing of unmanned surface vehicles[J].hebgcdxxb,2019,40(06):1043-1050.[doi:10.11990/jheu.201805093]
点击复制

面向无人艇自主靠泊的分层轨迹规划与试验(/HTML)
分享到:

《哈尔滨工程大学学报》[ISSN:1006-6977/CN:61-1281/TN]

卷:
40
期数:
2019年06期
页码:
1043-1050
栏目:
出版日期:
2019-06-05

文章信息/Info

Title:
Layered trajectory planning and experiment for the autoberthing of unmanned surface vehicles
作者:
李晔1 贾知浩1 张伟斌12 廖煜雷1
1. 哈尔滨工程大学 水下机器人技术重点实验室, 黑龙江 哈尔滨 150001;
2. 云洲智能科技有限公司, 广东 珠海 519000
Author(s):
LI Ye1 JIA Zhihao1 ZHANG Weibin12 LIAO Yulei1
1. Science and Technology on Underwater Vehicle Laboratory, Harbin Engineering University, Harbin 150001, China;
2. Yunzhou Intelligent Technology Corporation, Zhuhai 519000, China
关键词:
无人艇动力学约束分析分层规划轨迹规划人工势场受限水域靠泊
分类号:
U666;TP242
DOI:
10.11990/jheu.201805093
文献标志码:
A
摘要:
针对小型无人艇在自主靠泊时的轨迹规划任务,分别考虑远端和码头末端2阶段的主要影响因素,本文提出基于环境障碍、泊位及艇体动力学等多约束分析的分层人工势场轨迹规划方法,完成面向无人艇自主靠泊的轨迹规划任务。考虑小型无人艇自身体型较小、在低速靠泊状态下机动性较差、水域受限等导致的自主靠泊难题,提出基于靠泊约束分析的改进人工势场法,解决传统人工势场法中存在的弯角过大、艏向输出振荡和局部极小点问题。同时,考虑靠泊后期目标泊位及水域受限因素对无人艇艏向、速度的约束,使无人艇能够沿规划轨迹自主安全地完成靠泊任务。通过与传统人工势场法的仿真结果对比,验证该方法具有更好的轨迹规划性能;并基于“海豚-Ⅰ”号小型无人艇完成自主靠泊外场试验,检验所提出方法的有效性和可行性。

参考文献/References:

[1] 张强, 张显库. 船舶自动靠泊控制研究综述[J]. 大连海事大学学报, 2015, 41(3):1-9.ZHANG Qiang, ZHANG Xianku. Review on the research of ship automatic berthing control[J]. Journal of Dalian Maritime University, 2015, 41(3):1-9.
[2] AHMED Y A, HASEGAWA K. Implementation of automatic ship berthing using artificial neural network for free running experiment[C]//The 9th International Federation of Automatic Control (IFAC) Conference on Control Applications in Marine Systems (CAMS). Oxford, UK:IFAC-Elsevier Ltd, 2013:25-30.
[3] 张闯, 范中洲. 大型船舶自主靠泊方法研究[J]. 中国水运, 2014, 14(8):17-18, 20.ZHANG Chuang, FAN Zhongzhou. Study of self-berthing of the large vessel[J]. China water transport, 2014, 14(8):17-18, 20.
[4] WOO J, KIM N. Design of guidance law for docking of unmanned surface vehicle[J]. Journal of ocean engineering and technology, 2016, 30(3):208-213.
[5] VU M T, CHOI H S, OH J Y, et al. A study on automatic berthing control of an unmanned surface vehicle[J]. Journal of advanced research in ocean engineering, 2016, 2(4):192-201.
[6] AHMED Y A, HASEGAWA K. Automatic ship berthing using artificial neural network trained by consistent teaching data using nonlinear programming method[J]. Engineering applications of artificial intelligence, 2013, 26(10):2287-2304.
[7] PARK J Y, KIM N. Design of an adaptive backstepping controller for auto-berthing a cruise ship under wind loads[J]. International journal of naval architecture and ocean engineering, 2014, 6(2):347-360.
[8] MIZUNO N, KURODA M, OKAZAKI T, et al. Minimum time ship maneuvering method using neural network and nonlinear model predictive compensator[J]. Control engineering practice, 2007, 15(6):757-765.
[9] MIZUNO N, KAKAMI H, OKAZAKI T. Parallel simulation based predictive control scheme with application to approaching control for automatic berthing[J]. IFAC proceedings volumes, 2012, 45(27):19-24.
[10] NAEEM W, HENRIQUE S C, HU Liang. A reactive COLREGs-compliant navigation strategy for autonomous maritime navigation[J]. IFAC-PapersOnLine, 2016, 49(23):207-213.
[11] 江杰, 任恒靓. 基于改进人工势场法的移动机器人路径规划的研究[J]. 自动化应用, 2017(8):80-81, 118.JIANG Jie, REN Hengliang. Research on mobile robot path planning based on improved artificial potential field[J]. Automation applications, 2017(8):80-81, 118.
[12] 李晔, 姜言清, 张国成, 等. 考虑几何约束的AUV回收路径规划[J]. 机器人, 2015, 37(4):478-485.LI Ye, JIANG Yanqing, ZHANG Guocheng, et al. AUV recovery path planning method considering geometrical constraints[J]. Robot, 2015, 37(4):478-485.
[13] 廖煜雷, 张铭钧, 董早鹏, 等. 无人艇运动控制方法的回顾与展望[J]. 中国造船, 2014, 55(4):206-216.LIAO Yulei, ZHANG Mingjun, DONG Zaopeng, et al. Methods of motion control for unmanned surface vehicle:state of the art and perspective[J]. Shipbuilding of China, 2014, 55(4):206-216.
[14] LIAO Yulei, ZHANG Mingjun, WAN Lei. Serret-frenet frame based on path following control for underactuated unmanned surface vehicles with dynamic uncertainties[J]. Journal of Central South University, 2015, 22(1):214-223.
[15] LIAO Yulei, ZHANG Mingjun, WAN Lei, et al. Trajectory tracking control for underactuated unmanned surface vehicles with dynamic uncertainties[J]. Journal of central south university, 2016, 23(2):370-378.
[16] LIAO Yulei, WANG Leifeng, LI Yiming, et al. The intelligent control system and experiments for an unmanned wave glider[J]. PLoS one, 2016, 11(12):e0168792.

相似文献/References:

[1]董玉红,邓宗全,方海涛.六圆柱轮式月球车动力学建模与仿真[J].哈尔滨工程大学学报,2009,(02):192.
 DONG Yuhong,DENG Zongquart,FANG Haitao.Dynamics modeling and simulation of a lunar rover with six cylindrical wheels[J].hebgcdxxb,2009,(06):192.
[2]胡胜海,徐鹏,邓坤秀,等.考虑脚掌转动的跳跃机器人动力学与轨迹规划[J].哈尔滨工程大学学报,2011,(12):1065.[doi:doi:10.3969/j.issn.1006-7043.2011.12.014]
 HU Shenghai,XU Peng,DENG Kunxiu,et al.Dynamic and trajectory planning of a hopping robot based on rotation of the sole[J].hebgcdxxb,2011,(06):1065.[doi:doi:10.3969/j.issn.1006-7043.2011.12.014]
[3]张智,闻子侠,朱齐丹,等.舰载机阻拦过程动力学仿真[J].哈尔滨工程大学学报,2014,(05):571.[doi:10.3969/j.issn.10067043.201305035]
 ZHANG Zhi,WEN Zixia,ZHU Qidan,et al.Kinetic simulation of shipboard arresting system[J].hebgcdxxb,2014,(06):571.[doi:10.3969/j.issn.10067043.201305035]
[4]刘倩,郑洪涛,杨仁,等.介质阻挡放电辅助甲烷蒸汽重整的动力学分析[J].哈尔滨工程大学学报,2014,(10):1294.[doi:10.3969/j.issn.1006-7043.201310005]
 LIU Qian,ZHENG Hongtao,YANG Ren,et al.Kinetic analysis of methane steam reforming assisted by dielectric barrier discharge[J].hebgcdxxb,2014,(06):1294.[doi:10.3969/j.issn.1006-7043.201310005]
[5]廖煜雷,刘鹏,王建,等.基于改进人工鱼群算法的无人艇控制参数优化[J].哈尔滨工程大学学报,2014,(07):800.[doi:10.3969/j.issn.1006-7043.201306066]
 LIAO Yulei,LIU Peng,WANG Jian,et al.Control parameter optimization for the unmanned surface vehicle with the improved artificial fish swarm algorithm[J].hebgcdxxb,2014,(06):800.[doi:10.3969/j.issn.1006-7043.201306066]
[6]井丽龙,张文平,明平剑,等.Timoshenko梁静力学和动力学问题有限体积法求解[J].哈尔滨工程大学学报,2015,(09):1217.[doi:10.11990/jheu.201408044]
 JING Lilong,ZHANG Wenping,MING Pingjian,et al.Static and dynamic analysis of Timoshenko beam model based on the finite volume method[J].hebgcdxxb,2015,(06):1217.[doi:10.11990/jheu.201408044]
[7]张荣敏,陈原,高军.无鳍舵矢量推进水下机器人纵向稳定性研究[J].哈尔滨工程大学学报,2017,38(01):133.[doi:10.11990/jheu.201509089]
 ZHANG Rongmin,CHEN Yuan,GAO Jun.Longitudinal handling stability of vectored thrust underwater vehicle without fin and rudder[J].hebgcdxxb,2017,38(06):133.[doi:10.11990/jheu.201509089]
[8]刘阳,谢宗武,王滨,等.自由漂浮空间机器人视觉伺服系统研究[J].哈尔滨工程大学学报,2017,38(02):153.[doi:10.11990/jheu.201605027]
 LIU Yang,XIE Zongwu,WANG Bin,et al.Research on the visual servo system of a free-floating space robot[J].hebgcdxxb,2017,38(06):153.[doi:10.11990/jheu.201605027]
[9]慕东东,王国峰,范云生,等.吊舱推进无人水面艇的航向保持[J].哈尔滨工程大学学报,2018,39(02):274.[doi:10.11990/jheu.201610098]
 MU Dongdong,WANG Guofeng,FAN Yunsheng,et al.Study on course keeping of POD propulsion unmanned surface vessel[J].hebgcdxxb,2018,39(06):274.[doi:10.11990/jheu.201610098]
[10]孙敏,陈建恩,陈焕林.并联和串联非线性能量阱的吸振效能对比研究[J].哈尔滨工程大学学报,2018,39(10):1727.[doi:10.11990/jheu.201712025]
 SUN Min,CHEN Jianen,CHEN Huanlin.Comparison on vibration absorption efficiency of parallel and series nonlinear energy sinks[J].hebgcdxxb,2018,39(06):1727.[doi:10.11990/jheu.201712025]

备注/Memo

备注/Memo:
收稿日期:2018-05-22。
基金项目:国家自然科学基金项目(51779052,51579022,51709214,51879057);国防科技创新特区项目;黑龙江省青年自然科学基金项目(QC2016062);水下机器人技术重点实验室研究基金项目(614221503091701);黑龙江省博士后科研启动金(LBH-Q17046).
作者简介:李晔,男,教授,博士生导师;廖煜雷,男,副教授.
通讯作者:廖煜雷,E-mail:liaoyulei@hrbeu.edu.cn.
更新日期/Last Update: 2019-06-03