[1]王江超,史雄华,周宏,等.集装箱船大厚板焊接接头面外变形控制分析[J].哈尔滨工程大学学报,2019,40(09):1562-1568.[doi:10.11990/jheu.201805117]
 WANG Jiangchao,SHI Xionghua,ZHOU Hong,et al.Out-of-plane welding distortion control of thick plate butt-welded joint of a container ship[J].hebgcdxxb,2019,40(09):1562-1568.[doi:10.11990/jheu.201805117]
点击复制

集装箱船大厚板焊接接头面外变形控制分析(/HTML)
分享到:

《哈尔滨工程大学学报》[ISSN:1006-6977/CN:61-1281/TN]

卷:
40
期数:
2019年09期
页码:
1562-1568
栏目:
出版日期:
2019-09-05

文章信息/Info

Title:
Out-of-plane welding distortion control of thick plate butt-welded joint of a container ship
作者:
王江超12 史雄华1 周宏3 刘建峰4
1. 华中科技大学 船舶与海洋工程学院, 湖北 武汉 430074;
2. 上海交通大学 高新船舶与深海开发装备协同创新中心, 上海 200240;
3. 江苏科技大学 船舶与海洋工程学院, 江苏 镇江 212003;
4. 上海外高桥造船有限公司, 上海 200137
Author(s):
WANG Jiangchao12 SHI Xionghua1 ZHOU Hong3 LIU Jianfeng4
1. School of Naval Architecture and Ocean Engineering, Huazhong University of Science and Technology, Wuhan 430074, China;
2. Collaborative Innovation Center for Advanced Ship and Deep-sea Exploration, Shanghai Jiao Tong University, Shanghai 200240, China;
3. School of Naval Architecture and Ocean Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China;
4. Shanghai Waigaoqiao Shipbuilding Co., Ltd., Shanghai 200137, China
关键词:
焊接变形大厚板多层多道焊高效有限元分析并行计算技术对称顺序焊接反变形施加焊接坡口优化抗扭箱结构
分类号:
U671.8
DOI:
10.11990/jheu.201805117
文献标志码:
A
摘要:
集装箱船舷侧的抗扭箱结构,多采用60~85 mm级别的高强钢大厚板进行焊接建造;复杂的多层多道焊过程,使得焊接力学响应极为复杂,且焊接面外变形不易预测,直接影响建造精度和造船周期。针对其精度建造问题,本文预测并控制了对接焊接头的面外变形。通过采用基于并行计算技术的热-弹-塑性有限分析,考虑多层多道焊中的重熔现象,高效且精确地预测了传统焊接工艺下变厚度对接接头的面外变形。同时,使用对称顺序焊接、反变形加载,特别是优化坡口等方法,有效地控制了焊接面外变形。研究结果表明:本文提出的算法提高了温度场及焊接变形的计算效率;在一次翻身的情况下,实现了大厚板高效且精准地焊接建造,提高了焊接建造的效率。

参考文献/References:

[1] 蔡金裕, 于春龙. 集装箱船厚板焊接质量与变形的控制[J]. 金属加工(热加工), 2015(6):34-36.CAI Jinyu, YU Chunlong. Control of welding quality and deformation of Container Ship[J]. Metal forming, 2015(6):34-36.
[2] 刘建峰, 张海甬, 孙建志, 等. 18000TEU集装箱船关键建造技术[J]. 船舶与海洋工程, 2017, 33(1):65-71.LIU Jianfeng, ZHANG Haiyong, SUN Jianzhi, et al. Key technologies of 18000TEU container ship construction[J]. Naval architecture and ocean engineering, 2017, 33(1):65-71.
[3] 史雄华, 牛业兴, 向生, 等. 船体结构焊接变形的预测与控制研究进展[J]. 造船技术, 2019(1):1-6, 13.SHI Xionghua, NIU Yexing, XIANG Sheng, et al. Research progress on prediction and control of welding deformation of hull structure[J]. Marine technology, 2019(1):1-6, 13.
[4] HIBBITT H D, MARCAL P V. A numerical, thermo-mechanical model for the welding and subsequent loading of a fabricated structure[J]. Computers & structures, 1973, 3(5):1145-1174.
[5] FRIEDMAN E. Thermomechanical analysis of the welding process using the finite element method[J]. Journal of pressure vessel technology, 1975, 97(3):206-213.
[6] GOLDAK J A, AKHLAGHI M. Computational welding mechanics[M]. New York:Springer Publication, 2005.
[7] MURAKAWA H, MA Ninshu, HUANG Hui. Iterative substructure method employing concept of inherent strain for large-scale welding problems[J]. Welding in the world, 2015, 59(1):53-63.
[8] IKUSHIMA K, SHIBAHARA M. Prediction of residual stresses in multi-pass welded joint using Idealized Explicit FEM accelerated by a GPU[J]. Computational materials science, 2014, 93:62-67.
[9] IKUSHIMA K, ITOH S, SHIBAHARA M. Development of idealized explicit FEM using GPU parallelization and its application to large-scale analysis of residual stress of multi-pass welded pipe joint[J]. Welding in the world, 2015, 59(4):589-595.
[10] MA Ninshu. An accelerated explicit method with GPU parallel computing for thermal stress and welding deformation of large structure models[J]. International journal of advanced manufacturing technology, 2016, 87(5/6/7/8):2195-2211.
[11] WANG Jiangchao, RASHED S, MURAKAWA H. FE analysis of buckling behavior caused by welding in thin plates of high tensile strength steel[J]. Journal of materials engineering and performance, 2014, 23(12):4358-4365.
[12] WANG Jiangchao, MA Ninshu, MURAKAWA H. An efficient FE computation for predicting welding induced buckling in production of ship panel structure[J]. Marine structures, 2015, 41:20-52.
[13] MA Ninshu, WANG Jiangchao, OKUMOTO Y. Out-of-plane welding distortion prediction and mitigation in stiffened welded structures[J]. International journal of advanced manufacturing technology, 2015, 84(5/6/7/8):1371-1389.
[14] HERMANNS M. Parallel programming in Fortran 95 using OpenMP[EB/OL]. (2002-04-19). https://www.openmp.org/wp-content/uploads/F95_OpenMPv1_v2.pdf.
[15] CHANDRA R, DAGUM L, KOHR D, et al. Parallel programming in openMP[M]. San Diego:Academic Press, 2001.

备注/Memo

备注/Memo:
收稿日期:2018-05-27。
基金项目:工业与信息化部高技术船舶科研专项(15921019518).
作者简介:王江超,男,副教授.
通讯作者:王江超,E-mail:WJccn@hust.edu.cn.
更新日期/Last Update: 2019-09-06