[1]赵彬彬,陈永博,段文洋.势粘流单向耦合的直立圆柱波浪爬升模拟[J].哈尔滨工程大学学报,2019,40(07):1208-1216.[doi:10.11990/jheu.201805124]
 ZHAO Binbin,CHEN Yongbo,DUAN Wenyang.Wave run-up simulation on a vertical cylinder based on potential and viscous flow single-direction coupling technique[J].hebgcdxxb,2019,40(07):1208-1216.[doi:10.11990/jheu.201805124]
点击复制

势粘流单向耦合的直立圆柱波浪爬升模拟(/HTML)
分享到:

《哈尔滨工程大学学报》[ISSN:1006-6977/CN:61-1281/TN]

卷:
40
期数:
2019年07期
页码:
1208-1216
栏目:
出版日期:
2019-07-05

文章信息/Info

Title:
Wave run-up simulation on a vertical cylinder based on potential and viscous flow single-direction coupling technique
作者:
赵彬彬 陈永博 段文洋
哈尔滨工程大学 船舶工程学院, 黑龙江 哈尔滨 150001
Author(s):
ZHAO Binbin CHEN Yongbo DUAN Wenyang
College of Shipbuilding Engineering, Harbin Engineering University, Harbin 150001, China
关键词:
波浪爬升固定直立圆柱势粘流单向耦合技术非线性波浪STAR-CCM+谐波分析
分类号:
P751
DOI:
10.11990/jheu.201805124
文献标志码:
A
摘要:
针对单固定直立圆柱的波浪爬升问题,本文采用势粘流单向耦合技术对波浪爬升过程中波面高度与圆柱水平、垂向波浪力进行了数值预报。采用STAR-CCM+求解器对数值结果进行了网格收敛性分析,研究了圆柱壁面附近的网格参数。通过比较不同波陡波浪下的波浪爬升高度,一、二阶波面在圆柱周围的空间分布,以及流场绕射演化过程图,分析了非线性波浪绕射的特征;比较了不同波况下波浪爬升过程中圆柱体受力。结果表明:在波陡为1/10的强非线工况下迎浪位置的波面最大值可达到2倍的波幅。短波下圆柱周围波面的二阶效应明显,而长波下二阶量接近于零。本文采用的势粘流单向耦合方法对于波面和波浪力的预报结果与试验吻合良好,并且计算所需要的网格数要小于计算流体力学方法。

参考文献/References:

[1] 单铁兵, 杨建民, 李欣, 等. 深海平台立柱周围波浪非线性爬升研究进展[J]. 海洋工程, 2012, 30(1):151-160.SHAN Tiebing, YANG Jianmin, LI Xin, et al. Review of the research on non-linear wave run-up around columns of deepwater platform[J]. The ocean engineering, 2012, 30(1):151-160.
[2] MACCAMY R C, FUCHS R A. Wave forces on piles:a diffraction theory[R]. Washington DC:Corps of Engineering, Beach Erosion Board, 1954.
[3] KRIEBEL D L. Nonlinear wave interaction with a vertical circular cylinder. Part Ⅱ:wave run-up[J]. Ocean engineering, 1992, 19(1):75-99.
[4] MORRIS-THOMAS M, THIAGARAJAN K, KROKSTAD J. An experimental investigation of wave steepness and cylinder slenderness effects on wave run-up[C]//Proceedings of the ASME 200221st International Conference on Offshore Mechanics and Arctic Engineering. Norway, 2002:244-253.
[5] STANSBERG C T, KRISTIANSEN T. Non-linear scattering of steep surface waves around vertical columns[J]. Applied ocean research, 2005, 27(2):65-80. DOI:10.1016/j.apor.2005.11.004.
[6] 单铁兵. 波浪爬升的机理性探索和半潜式平台气隙响应的关键特性研究[D]. 上海:上海交通大学, 2013.SHAN Tiebing. Research on the mechanism of wave run-up and the key characteristics of air-gap response of semi-submersible[D]. Shanghai:Shanghai Jiao Tong University, 2013.
[7] YOON S H, KIM D H, SADAT-HOSSEINI H, et al. High-fidelity CFD simulation of wave run-up for single/multiple surface-piercing cylinders in regular head waves[J]. Applied ocean research, 2016, 59:687-708.
[8] KIM J, JAIMAN R, COSGROVE S, et al. Numerical wave tank analysis of wave run-up on a truncated vertical cylinder[C]//Proceedings of the ASME 201130th International Conference on Ocean, Offshore and Arctic Engineering. The Netherlands, 2011:805-814.
[9] KIM J, O’SULLIVAN J, READ A. Ringing analysis of a vertical cylinder by Euler overlay method[C]//Proceedings of the ASME 201231st International Conference on Ocean, Offshore and Arctic Engineering. Rio de Janeiro, Brazil, 2012:855-866.
[10] BOCKMANN A, PÂKOZDI C, KRISTIANSEN T, et al. An experimental and computational development of a benchmark solution for the validation of numerical wave tanks[C]//Proceedings of the ASME 201433rd International Conference on Ocean, Offshore and Arctic Engineering. San Francisco, California, USA, 2014:V002T08A092.
[11] BAQUET A, KIM J, HUANG Z J. Numerical modeling using CFD and potential wave theory for three-hour nonlinear irregular wave simulations[C]//Proceedings of the ASME 201736th International Conference on Ocean, Offshore and Arctic Engineering. Trondheim, Norway, 2017:V001T01A002.
[12] ITTC. Final report and recommendations to the 27th ITTC[R]. Copenhagen, Denmark:ITTC, 2014.
[13] SUN L, ZANG J, CHEN L, et al. Regular waves onto a truncated circular column:a comparison of experiments and simulations[J]. Applied ocean research, 2016, 59:650-662.
[14] STAR-CCM+. User Guide version 12.02[J]. Siemens PLM Software.
[15] 赵彬彬, 段文洋. 层析水波理论-GN波浪模型[M]. 北京:清华大学出版社, 2014.ZHAO Binbin, DUAN Wenyang. Fluid sheets wave theory-GN wave model[M]. Beijing:Tsinghua University Press, 2014.
[16] 唐鹏, 于定勇, BAI Wei, 等. 海洋工程中直立圆柱波浪爬升问题的数值研究[J]. 中国海洋大学学报, 2016, 46(10):116-122.TANG Peng, YU Dingyong, BAI Wei, et al. Numerical simulation of wave run-up on cylindrical offshore structures[J]. Periodical of Ocean University of China, 2016, 46(10):116-122.

相似文献/References:

[1]闫发锁,杨慧,沈鹏飞,等.极限波浪下半潜平台气隙和波浪爬升的统计分析[J].哈尔滨工程大学学报,2015,(02):143.[doi:10.3969/j.issn.1006-7043.201307017]
 YAN Fasuo,YANG Hui,SHEN Pengfei,et al.Statistical analysis of airgap and wave run-up for a semi-submersible platform under extreme waves[J].hebgcdxxb,2015,(07):143.[doi:10.3969/j.issn.1006-7043.201307017]

备注/Memo

备注/Memo:
收稿日期:2018-05-31。
基金项目:国家自然科学基金项目(51679043).
作者简介:赵彬彬,男,教授,博士生导师;段文洋,男,教授,博士生导师,"长江学者"特聘教授.
通讯作者:段文洋,E-mail:duanwenyangheu@hotmail.com
更新日期/Last Update: 2019-07-04