[1]伍志元,蒋昌波,邓斌,等.波流耦合模式及其在理想潮汐通道中的应用[J].哈尔滨工程大学学报,2019,40(08):1420-1426.[doi:10.11990/jheu.201805127]
 WU Zhiyuan,JIANG Changbo,DENG Bin,et al.SWAN-ROMS coupling model and its application in idealized tidal inlets[J].hebgcdxxb,2019,40(08):1420-1426.[doi:10.11990/jheu.201805127]
点击复制

波流耦合模式及其在理想潮汐通道中的应用(/HTML)
分享到:

《哈尔滨工程大学学报》[ISSN:1006-6977/CN:61-1281/TN]

卷:
40
期数:
2019年08期
页码:
1420-1426
栏目:
出版日期:
2019-08-05

文章信息/Info

Title:
SWAN-ROMS coupling model and its application in idealized tidal inlets
作者:
伍志元123 蒋昌波12 邓斌12 曹永港4
1. 长沙理工大学 水利工程学院, 湖南 长沙 410004;
2. 水沙科学与水灾害防治湖南省重点实验室, 湖南 长沙 410004;
3. 美国麻省大学 海洋科学与技术学院, 美国马萨诸塞州 新贝德福德 02744;
4. 国家海洋局 南海调查技术中心, 广东 广州 510300
Author(s):
WU Zhiyuan123 JIANG Changbo12 DENG Bin12 CAO Yonggang4
1. School of Hydraulic Engineering, Changsha University of Science & Technology, Changsha 410004, China;
2. Hu’nan Provincial Key Laboratory of Water, Sediment Sciences & Flood Hazard Prevention, Changsha 410004, China;
3. School for Marine Science and Technology, University of Massachusetts Dartmouth, New Bedford, MA 02744, USA;
4. Key Laboratory of Technology for Safeguarding of Maritime Rights and Interests and Application, State Oceanic Administration, Guangzhou 510300, China
关键词:
波流耦合潮汐通道海洋模式海浪模式辐射应力
分类号:
TV148
DOI:
10.11990/jheu.201805127
文献标志码:
A
摘要:
波浪和水流是近岸地区最重要的2种动力要素,为探究两者之间相互作用关系,本文利用MCT耦合器,将第3代海浪模型SWAN和区域海洋模型ROMS进行耦合,建立了SWAN-ROMS波流双向实时耦合模型。针对理想潮汐通道的典型算例进行波流耦合计算分析,分别对采用SWAN模型单独计算和采用SWAN与ROMS耦合计算的方案进行了数值试验,通过对照两者的结果,分析波流相互作用条件下对波浪和潮流的影响。研究发现建立的波流耦合模式能够较好模拟潮汐通道中的波、流相互作用关系,潮流的存在对波浪影响较为明显,周期性的潮流运动使得稳定的波浪场也产生了周期性变化,潮流与波浪向同一方向传播时,会导致波高减小,而相对运动则会导致波高增加。

参考文献/References:

[1] UCHIYAMA Y, MCWILLIAMS J C, SHCHEPETKIN A F. Wave-current interaction in an oceanic circulation model with a vortex-force formalism:application to the surf zone[J]. Ocean modelling, 2010, 34(1/2):16-35.
[2] FENG Xingru, YIN Baoshu, YANG Dezhou. Development of an unstructured-grid wave-current coupled model and its application[J]. Ocean modelling, 2016, 104:213-225.
[3] LIM H S, CHUN I, SHIM J S, et al. Wave-induced current simulated by wave-current coupled model in Haeundae[J]. Journal of coastal research, 2016, 2:1392-1396.
[4] LONGUET-HIGGINS M S, STEWART R W. Radiation stress and mass transport in gravity waves, with application to ‘surf beats’[J]. Journal of fluid mechanics, 1962, 13(4):481-504.
[5] SABATINO A D, MCCAIG C, O’HARA MURRAY R B, et al. Modelling wave-current interactions off the east coast of Scotland[J]. Ocean science, 2016, 12(4):875-897.
[6] GODA Y. Examination of the influence of several factors on longshore current computation with random waves[J]. Coastal engineering, 2006, 53(2/3):157-170.
[7] 刘磊, 费建芳, 章立标, 等. 台风条件下一种新的浪流相互作用参数化方法在耦合模式中的应用[J]. 物理学报, 2012, 61(5):059201.LIU Lei, FEI Jianfang, ZHANG Libiao, et al. New parameterization of wave-current interaction used in a two-way coupled model under typhoon conditions[J]. Acta physica sinica, 2012, 61(5):059201.
[8] XIA Huayong, XIA Zongwan, ZHU Liangsheng. Vertical variation in radiation stress and wave-induced current[J]. Coastal engineering, 2004, 51(4):309-321.
[9] ZHENG Jinhai. Depth-dependent expression of obliquely incident wave induced radiation stress[J]. Progress in natural science, 2007, 17(9):1067-1073.
[10] 王平, 张宁川. 近岸波生环流的三维数值模拟研究[J]. 哈尔滨工程大学学报, 2015, 36(1):34-40.WANG Ping, ZHANG Ningchuan. Three-dimensional numerical simulation of the wave-induced nearshore circulation[J]. Journal of Harbin Engineering University, 2015, 36(1):34-40.
[11] 伍志元, 蒋昌波, 邓斌, 等. 基于海气耦合模式的南中国海北部风暴潮模拟[J]. 科学通报, 2018, 63(33):3494-3504.WU Zhiyuan, JIANG Changbo, DENG Bin, et al. Simulation of the storm surge in the South China Sea based on the coupled sea-air model[J]. China science bulletin, 2018, 63(33):3494-3504.
[12] SWAN Team. SWAN implementation manual[R]. Delft:Delft University of Technology, 2013.
[13] DENG Zeng’an. XIE Li’an, HAN Guijun, et al. The effect of Coriolis-Stokes forcing on upper ocean circulation in a two-way coupled wave-current model[J]. Chinese journal of oceanology and limnology, 2012, 30(2):321-335.
[14] WARNER J C, SHERWOOD C R, SIGNELL R P, et al. Development of a three-dimensional, regional, coupled wave, current, and sediment-transport model[J]. Computers & geosciences, 2008, 34(10):1284-1306.
[15] AKAN Ç, MOGHIMI S, ÖZKAN-HALLER H T, et al. On the dynamics of the mouth of the Columbia River:results from a three-dimensional fully coupled wave-current interaction model[J]. Journal of geophysical research:oceans, 2017, 122(7):5218-5236.
[16] LARSON J, JACOB R, ONG E. The model coupling toolkit:a new Fortran90 toolkit for building multiphysics parallel coupled models[J]. The international journal of high performance computing applications, 2005, 19(3):277-292.
[17] 王世澎, 梁书秀, 孙昭晨. 二维情况下波浪对潮流场作用的数值分析[J]. 海洋学报, 2007, 29(2):173-178.WANG Shipeng, LIANG Shuxiu, SUN Zhaochen. The numerical analysis of wave effects on a tidal current in two dimensions[J]. Acta oceanologica sinica, 2007, 29(2):173-178.

备注/Memo

备注/Memo:
收稿日期:2018-5-31。
基金项目:国家自然科学基金项目(51809023,51839002,51879015);水利部珠江河口动力学及伴生过程调控重点实验室开放研究基金项目([2018]KJ03);国家海洋局南海维权技术与应用重点实验室开放基金项目(SCS1606);水沙科学与水灾害防治湖南省重点实验室开放基金项目(2017SS06).
作者简介:伍志元,男,博士后;蒋昌波,男,教授.
通讯作者:蒋昌波,E-mail:jiangchb@csust.edu.cn.
更新日期/Last Update: 2019-08-05