[1]朱丽燕,李铁山,单麒赫.船舶航向非线性离散系统自适应模糊最优控制[J].哈尔滨工程大学学报,2019,40(09):1576-1581.[doi:10.11990/jheu.201806005]
 ZHU Liyan,LI Tieshan,SHAN Qihe.Optimal adaptive fuzzy control for ship course discrete-time systems[J].hebgcdxxb,2019,40(09):1576-1581.[doi:10.11990/jheu.201806005]
点击复制

船舶航向非线性离散系统自适应模糊最优控制(/HTML)
分享到:

《哈尔滨工程大学学报》[ISSN:1006-6977/CN:61-1281/TN]

卷:
40
期数:
2019年09期
页码:
1576-1581
栏目:
出版日期:
2019-09-05

文章信息/Info

Title:
Optimal adaptive fuzzy control for ship course discrete-time systems
作者:
朱丽燕 李铁山 单麒赫
大连海事大学 航海学院, 辽宁 大连 116026
Author(s):
ZHU Liyan LI Tieshan SHAN Qihe
Navigation Collage, Dalian Maritime University, Dalian 116026, China
关键词:
船舶航向控制离散时间非线性系统自适应控制模糊逻辑系统后推方法最优控制
分类号:
TP273.2
DOI:
10.11990/jheu.201806005
文献标志码:
A
摘要:
针对船舶航向非线性离散时间系统,本文提出一种基于模糊逻辑系统的自适应最优航向控制算法。本文优化控制算法采用actor-critic结构,模糊逻辑评价系统和模糊逻辑执行系统分别用于构建最优评价信号和最优控制信号。模糊权值采用梯度下降法进行更新学习,并以大连海事大学“育龙”轮为例进行仿真研究。基于前向差分Lyapunov方法证明了闭环系统半全局一致最终有界,保证系统跟踪误差收敛到以零为中心的邻域内。仿真结果进一步验证了本文算法的有效性和合理性。

参考文献/References:

[1] VAN Amerongen J. Adaptive steering of ships-A model reference approach[J]. Automatica, 1984, 20(1):3-14.
[2] 杨盐生. 船舶航向非线性系统的模型参考模糊自适应控制[J]. 中国造船, 2003, 44(3):85-93.YANG Yansheng. Model reference fuzzy adaptive control of ship course nonlinear system[J]. Shipbuilding of China, 2003, 44(3):85-93.
[3] 卜仁祥, 刘正江, 李铁山. 迭代滑模增量反馈及在船舶航向控制中的应用[J]. 哈尔滨工程大学学报, 2007, 28(3):268-272.BU Renxiang, LIU Zhengjiang, LI Tieshan. Iterative sliding mode based increment feedback control and its application to ship autopilot[J]. Journal of Harbin Engineering University,2007, 28(3):268-272.
[4] 刘程, 李铁山, 陈纳新. 带有舵机特性的船舶航向自动舵DSC-MLP设计[J]. 哈尔滨工程大学学报, 2012, 33(1):9-14.LIU Cheng, LI Tieshan, CHEN Naxin. Dynamic surface control and minimal learning parameter design of ship’s autopilot with rudder dynamics[J]. Journal of Harbin Engineering University,2012, 33(1):9-14.
[5] 王欣, 李铁山, 林彬. 考虑舵机特性的船舶航向离散非线性系统输出反馈控制设计[J]. 大连海事大学学报, 2014(2):1-4.WANG Xin, LI Tieshan, LIN Bin. Output feedback control for ship course discrete-time nonlinear systems with rudder dynamics.[J]. Journal of Dalian Maritime University,2014(2):1-4.
[6] BAI Xuerui, YI Jianqiang, ZHAO Dongbin. Approximate dynamic programming for ship course control[M]//Advances in Neural Networks-ISNN 2007. Springer Berlin Heidelberg, 2007:349-357.
[7] XIE Qingqing, LUO Bin, TAN Fuxiao. Optimal tracking control for ship course using approximate dynamic programming method[C]//Control Conference. IEEE, 2013:2911-2916.
[8] Werbos P J. Approximate dynamic programming for real-time control and neural modeling. Handbook of Intelligent Control:Neural, Fuzzy, and Adaptive Approaches,1992,15:493-525.
[9] 李永明. 非匹配不确定非线性系统自适应模糊控制[D]. 大连海事大学, 2014:12-13.LI Yongming. Adaptive fuzzy control for unmatched uncertain nonlinear systems[D].Dalian Maritime University,2014:12-13.
[10] Wang Linxin. Stability adaptive fuzzy control of nonliner system[J]. IEEE transactions on fuzzy system, 1993,1(2):146-155.
[11] LIU Yanjun, GAO Ying, TONG Shaocheng, et al. Fuzzy approximation-based adaptive backstepping optimal control for a class of nonlinear discrete-time systems with dead-zone[J]. IEEE Transactions on Fuzzy Systems, 2016, 24(1):16-28.
[12] YANG Qinmin, Jagannathan S. Reinforcement learning controller design for affine nonlinear discrete-time systems using online approximators.[J]. IEEE Transactions on Systems Man & Cybernetics Part B, 2012, 42(2):377-390.
[13] GE Shuzhi, LI Gangyang, LEE Tongheng. Adaptive NN control for a class of strict-feedback discrete-time nonlinear systems. Automatica,2003:807-819.
[14] 王欣, 刘正江, 李铁山,等. 船舶航向离散非线性系统自适应神经网络控制[J]. 哈尔滨工程大学学报, 2016(1):123-126.WANG Xin, LIU Zhengjiang, LI Tieshan, et al. Neural network-based adaptive control for a ship course discrete-time nonlinear system[J]. Journal of Harbin Engineering University,2016(1):123-126.
[15] LIU Derong, WANG Ding, ZHAO Dongbin, et al. Neural-network-based optimal control for a class of unknown discrete-time nonlinear systems using globalized dual heuristic programming[J]. IEEE transactions on automation science & engineering, 2012, 9(3):628-634.
[16] HE Pingan, JAGANNATHAN S. Reinforcement learning neural-network-based controller for nonlinear discrete-time systems with input constraints[J]. IEEE transactions on systems man & cybernetics part B, 2007, 37(2):425.

相似文献/References:

[1]王欣,刘正江,李铁山,等.船舶航向离散非线性系统自适应神经网络控制[J].哈尔滨工程大学学报,2016,37(01):123.[doi:10.11990/jheu.201410044]
 WANG Xin,LIU Zhengjiang,LI Tieshan,et al.Neural network-based adaptive control for a ship course discrete-time nonlinear system[J].hebgcdxxb,2016,37(09):123.[doi:10.11990/jheu.201410044]

备注/Memo

备注/Memo:
收稿日期:2018-06-04。
基金项目:国家自然科学基金项目(5193000654,6197023695,61803064,61751202);大连市重点学科重大课题科技创新基金项目(2018J11CY022);中央高校基本科研业务费专项资金项目(3132019345).
作者简介:朱丽燕,女,博士研究生;李铁山,男,教授,博士生导师.
通讯作者:李铁山,E-mail:tieshanli@126.com.
更新日期/Last Update: 2019-09-06