[1]李爽,杨金水,吴林志,等.边界和杆件倾角对沙漏点阵结构振动特性的影响[J].哈尔滨工程大学学报,2019,40(05):878-885.[doi:10.11990/jheu.201806085]
 LI Shuang,YANG Jinshui,WU Linzhi,et al.Influence of boundary conditions and truss inclination angles on vibration characteristics of the hourglass lattice structure[J].hebgcdxxb,2019,40(05):878-885.[doi:10.11990/jheu.201806085]
点击复制

边界和杆件倾角对沙漏点阵结构振动特性的影响(/HTML)
分享到:

《哈尔滨工程大学学报》[ISSN:1006-6977/CN:61-1281/TN]

卷:
40
期数:
2019年05期
页码:
878-885
栏目:
出版日期:
2019-05-05

文章信息/Info

Title:
Influence of boundary conditions and truss inclination angles on vibration characteristics of the hourglass lattice structure
作者:
李爽12 杨金水12 吴林志123 于国财12 杨丽红12 曲嘉12
1. 哈尔滨工程大学 航天与建筑工程学院, 黑龙江 哈尔滨 150001;
2. 哈尔滨工程大学 先进船舶材料与力学工信部重点实验室, 黑龙江 哈尔滨 150001;
3. 哈尔滨工业大学 复合材料与结构研究所, 黑龙江 哈尔滨 150080
Author(s):
LI Shuang12 YANG Jinshui12 WU Linzhi123 YU Guocai12 YANG Lihong12 QU Jia12
1. College of Aerospace and Civil Engineering, Harbin Engineering University, Harbin 150001, China;
2. Key Laboratory of Advanced Ship Materials and Mechanics, Harbin Engineering University, Harbin 150001, China;
3. Center for Composite Materials, Harbin Institute of Technology, Harbin 150001, China
关键词:
沙漏型点阵结构边界条件倾斜角度振动模态加速度频响数值仿真
分类号:
O327
DOI:
10.11990/jheu.201806085
文献标志码:
A
摘要:
为设计兼具优异承载与减振功能的先进轻质多功能结构材料,本文通过试验结合数值的方法研究和对比了新型金属沙漏型点阵结构和传统金字塔型点阵结构的固有振动和谐响应特性。基于模态有限元法和模态叠加法,研究了不同边界条件和芯子杆件倾斜角度的沙漏和金字塔型点阵结构固有振动和谐响应特性,阐述了不同边界条件和杆件倾斜角度对结构加速度频响曲线和幅值的影响规律。结果表明:芯子相对密度相同时,沙漏型点阵结构具有较高的固有频率,且对边界条件和杆件倾斜角度变化更敏感。通过优化设计杆件倾斜角度可实现结构加速度频响幅值的调控,为下一步工程应用提供理论依据和技术储备。

参考文献/References:

[1] SCHAEDLER T A, JACOBSEN A J, TORRENTS A, et al. Ultralight metallic microlattices[J]. Science, 2011, 334(6058):962-965.
[2] ELSAYED M S A, PASINI D. Multiscale structural design of columns made of regular octet-truss lattice material[J]. International journal of solids and structures, 2010, 47(14/15):1764-1774.
[3] 卢天健, 何德坪, 陈常青, 等. 超轻多孔金属材料的多功能特性及应用[J]. 力学进展, 2006, 36(4):517-535. LU Tianjian, HE Deping, CHEN Changqing, et al. The multi-functionality of ultra-light porous metals and their applications[J]. Advances in mechanics, 2006, 36(4):517-535.
[4] QUEHEILLALT D T, WADLEY H N G. Pyramidal lattice truss structures with hollow trusses[J]. Materials science and engineering:A, 2005, 397(1/2):132-137.
[5] 范华林, 杨卫. 轻质高强点阵材料及其力学性能研究进展[J]. 力学进展, 2007, 37(1):99-112. FAN Hualin, YANG Wei. Development of lattice materials with high specific stiffness and strength[J]. Advances in mechanics, 2007, 37(1):99-112.
[6] SEBAEY T A, MAHDI E. Behavior of pyramidal lattice core sandwich CFRP composites under biaxial compression loading[J]. Composite structures, 2014, 116:67-74.
[7] 张钱城, 卢天健, 闻婷. 轻质高强点阵金属材料的制备及其力学性能强化的研究进展[J]. 力学进展, 2010, 40(2):157-169. ZHANG Qiancheng, LU Tianjian, WEN Ting. Processes in the study on enhanced mechanical properties of high-performance lightweight lattice metallic materials[J]. Advances in mechanics, 2010, 40(2):157-169.
[8] CLOUGH E C, ENSBERG J, ECKEL Z C, et al. Mechanical performance of hollow tetrahedral truss cores[J]. International journal of solids and structures, 2016, 91:115-126.
[9] YANG Jinshui, XIONG Jian, MA Li, et al. Vibration and damping characteristics of hybrid carbon fiber composite pyramidal truss sandwich panels with viscoelastic layers[J]. Composite structures, 2013, 106:570-580.
[10] LOU Jia, MA Li, WU Linzhi. Free vibration analysis of simply supported sandwich beams with lattice truss core[J]. Materials science and engineering:B, 2012, 177(19):1712-1716.
[11] ZHANG Lei, FEIH S, DAYNES S, et al. Buckling optimization of Kagome lattice cores with free-form trusses[J]. Materials & design, 2018, 145:144-155.
[12] WANG Bing, HU Jiqiang, LI Y Q, et al. Mechanical properties and failure behavior of the sandwich structures with carbon fiber-reinforced X-type lattice truss core[J]. Composite structures, 2018,185:619-633.
[13] FENG Lijia, WU Linzhi, YU Guocai. An Hourglass truss lattice structure and its mechanical performances[J]. Materials & design, 2016, 99:581-591.
[14] FENG Lijia, XIONG Jian, YANG Lihong, et al. Shear and bending performance of new type enhanced lattice truss structures[J]. International journal of mechanical sciences, 2017, 134:589-598.
[15] 曾嵩, 朱荣, 姜炜, 等. 金属点阵材料的研究进展[J]. 材料导报, 2012, 26(3):18-23, 35. ZENG Song, ZHU Rong, JIANG Wei, et al. Research progress of metal lattice materials[J]. Materials review, 2012, 26(3):18-23, 35.
[16] 马力, 杨金水. 新型轻质复合材料夹芯结构振动阻尼性能研究进展[J]. 应用数学和力学, 2017, 38(4):369-398. MA Li, YANG Jinshui. Progresses in the study on vibration damping properties of novel lightweight composite sandwich structures[J]. Applied mathematics and mechanics, 2017, 38(4):369-398.
[17] 陈杨科, 何书韬, 刘均, 等. 金属夹层结构的舰船应用研究综述[J]. 中国舰船研究, 2013, 8(6):6-13. CHEN Yangke, HE Shutao, LIU Jun, et al. Application and prospect of steel sandwich panels in warships[J]. Chinese journal of ship research, 2013, 8(6):6-13.
[18] YANG Jinshui, MA Li, SCHMIDT R, et al. Hybrid lightweight composite pyramidal truss sandwich panels with high damping and stiffness efficiency[J]. Composite structures, 2016, 148:85-96.
[19] LI Meng, LI Fengming, JING Xingjian. Active vibration control of composite pyramidal lattice truss core sandwich plates[J]. Journal of aerospace engineering, 2018, 31(2):04017097.
[20] YANG Jinshui, MA Li, SCHRÖDER K U, et al. Experimental and numerical study on the modal characteristics of hybrid carbon fiber composite foam filled corrugated sandwich cylindrical panels[J]. Polymer testing, 2018, 68:8-18.

备注/Memo

备注/Memo:
收稿日期:2018-7-1。
基金项目:国家自然科学基金项目(11432004,11772097,11761131006);中国博士后科学基金项目(2017M620110);中央高校基本科研业务费专项资金项目(HEUCFP201802,HEUCFP201804);黑龙江省博士后科学基金项目(LBH-Z17043).
作者简介:李爽,女,博士研究生;杨金水,男,副教授;吴林志,男,教授,博士生导师,"长江学者"特聘教授.
通讯作者:杨金水,E-mail:yangjinshui@hrbeu.edu.cn
更新日期/Last Update: 2019-05-14