[1]张铁,张爱民,覃彬彬,等.柔体动力学模型的机器人柔性力矩前馈控制[J].哈尔滨工程大学学报,2019,40(08):1509-1516.[doi:10.11990/jheu.201807001]
 ZHANG Tie,ZHANG Aimin,QIN Binbin,et al.Flexible torque feed-forward control of robots in the flexible dynamics model[J].hebgcdxxb,2019,40(08):1509-1516.[doi:10.11990/jheu.201807001]
点击复制

柔体动力学模型的机器人柔性力矩前馈控制(/HTML)
分享到:

《哈尔滨工程大学学报》[ISSN:1006-6977/CN:61-1281/TN]

卷:
40
期数:
2019年08期
页码:
1509-1516
栏目:
出版日期:
2019-08-05

文章信息/Info

Title:
Flexible torque feed-forward control of robots in the flexible dynamics model
作者:
张铁1 张爱民1 覃彬彬1 刘晓刚2
1. 华南理工大学 机械与汽车工程学院, 广东 广州 510641;
2. 桂林航天工业学院 广西高校机器人与焊接重点实验室, 广西 桂林 541004
Author(s):
ZHANG Tie1 ZHANG Aimin1 QIN Binbin1 LIU Xiaogang2
1. School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510641, China;
2. Guangxi Key Laboratory of Robotics and Welding, Guilin University of Aerospace Technology, Guilin 541004, China
关键词:
机器人柔体动力学刚度系数辨识柔性位置前馈补偿
分类号:
TP242.2;TH113.1
DOI:
10.11990/jheu.201807001
文献标志码:
A
摘要:
为解决机器人由于结构复杂、关节耦合以及控制的非线性时变等因素给其带来的动态响应迟滞,以及关节的柔性因素引起的机械谐振的问题,改进了刚体前馈力矩补偿方法,提出了基于柔体动力学模型的柔性力矩前馈补偿控制。该方法通过建立机器人柔性关节的动力学模型,辨识得到柔性关节的扭转刚度参数以及最小惯性参数,获取更为准确的柔性因素下的预设轨迹的位置、速度、加速度信息,从而计算出柔性关节下所需的力矩值;将计算值作为前馈量,以周期为T的形式发送到伺服驱动器的底层,实时刷新驱动器,采用补偿的形式与电流环输出量进行叠加,从而实现机器人的柔性控制,使得机器人末端振动加速度幅值下降60%,提高了定位精度。实验验证了柔体动力学模型的机器人柔性力矩前馈控制的工程应用价值。

参考文献/References:

[1] FENG Fei, LIU Yiwei, LIU Hong, et al. Design schemes and comparison research of the end-effector of large space manipulator[J]. Chinese journal of mechanical engineering, 2012, 25(4):674-687.
[2] 杨益波. 柔性关节柔性臂杆机械臂动力学建模与振动抑制研究[D]. 哈尔滨:哈尔滨工业大学, 2015.YANG Yibo. The dynamics modeling and vibration sup pression research off lexible joint-flex ible link manipulators[D]. Harbin:Harbin Institute of Technology, 2015.
[3] ZHU Yaguang, JIN Bo, LI Wei. Leg compliance control of a hexapod robot based on improved adaptive control in different environments[J]. Journal of Central South University, 2015, 22(3):904-913.
[4] MAKAROV M, GROSSARD M, RODRÍGUEZ-AYERBE P, et al. Modeling and preview H control design for motion control of elastic-joint robots with uncertainties[J]. IEEE transactions on industrial electronics, 2016, 63(10):6429-6438.
[5] AHMAD M A, MOHAMED Z, ISMAIL Z H. Experimental investigation of feedforward control schemes of a flexible robot manipulator system[J]. Elektrika:journal of electrical engineering, 2008, 10(2):28-35.
[6] PAUL R P. Robot manipulators:mathematics, programming, and control:the computer control of robot manipulators[M]. London:The MIT Press, 1981:164-172.
[7] OTT C. Cartesian impedance control of redundant and flexible-joint robots[M]. Berlin Heidelberg:Springer, 2008.
[8] CHAN M L. Controller synthesis and vibration suppression techniques for industrial robotic manipulators with joint flexibilities[D]. Berkeley:University of California, 2013.
[9] PHAM M T, GAUTIER M, POIGNET P. Identification of joint stiffness with bandpass filtering[C]//Proceedings of 2001 IEEE International Conference on Robotics and Automation. Seoul, South Korea, 2001:2867-2872.
[10] DING Li, WU Hongtao, YAO Yu, et al. Dynamic model identification for 6-DOF industrial robots[J]. Journal of robotics, 2015, 2015:471478.
[11] CORKE P. Robotics, vision and control[M]. Berlin:Springer, 2011.
[12] SOUSA C D, RUI C. Physical feasibility of robot base inertial parameter identification:A linear matrix inequality approach[J]. The international journal of robotics research, 2014, 33(6):931-944.

相似文献/References:

[1]吴健荣,王立权,王才东,等.一种机器人精度设计的新方法研究[J].哈尔滨工程大学学报,2010,(10):0.
 WU Jian-rong,WANG Li-quan,WANG Cai-dong,et al.A novel method for robotic precision design[J].hebgcdxxb,2010,(08):0.
[2]马洪文,王立权,赵朋,等.串联弹性驱动器力驱动力学模型和稳定性分析[J].哈尔滨工程大学学报,2012,(11):1410.[doi:10.3969/j.issn.1006-7043.201109012]
 MA Hongwen,WANG Liquan,ZHAO Peng,et al.Research of dynamic dodel and stability of a series elastic actuator[J].hebgcdxxb,2012,(08):1410.[doi:10.3969/j.issn.1006-7043.201109012]
[3]霍光磊,赵立军,李瑞峰,等.基于假设检验的室内环境多特征检测方法[J].哈尔滨工程大学学报,2015,(03):348.[doi:10.3969/j.issn.1006-7043.201310040]
 HUO Guanglei,ZHAO Lijun,LI Ruifeng,et al.An indoor environmental multi-feature identification method based on the hypothesis testing[J].hebgcdxxb,2015,(08):348.[doi:10.3969/j.issn.1006-7043.201310040]
[4]李超,张智,夏桂华,等.基于强化学习的学习变阻抗控制[J].哈尔滨工程大学学报,2019,40(02):304.[doi:10.11990/jheu.201803020]
 LI Chao,ZHANG Zhi,XIA Guihua,et al.Learning variable impedance control based on reinforcement learning[J].hebgcdxxb,2019,40(08):304.[doi:10.11990/jheu.201803020]

备注/Memo

备注/Memo:
收稿日期:2018-7-1。
基金项目:国家高档数控机床与基础制造装备科技重大专项(2015ZX04005006);广东省科技重大专项项目(2014B090920002,2015B010918002);中山市科技重大专项项目(2016F2FC0006);广西高校机器人与焊接重点实验室课题(JQR2015KF02).
作者简介:张铁,男,教授,博士生导师.
通讯作者:张铁,E-mail:merobot@scut.edu.cn.
更新日期/Last Update: 2019-08-05