[1]刘启庆,李强,蔡尚,等.基于压缩粒子群算法的水雷策略优化研究[J].哈尔滨工程大学学报,2019,40(07):1230-1237.[doi:10.11990/jheu.201807016]
 LIU Qiqing,LI Qiang,CAI Shang,et al.Optimization study of the mine-laying strategy on the basis of the particle swarm optimization algorithm with compression factor[J].hebgcdxxb,2019,40(07):1230-1237.[doi:10.11990/jheu.201807016]
点击复制

基于压缩粒子群算法的水雷策略优化研究(/HTML)
分享到:

《哈尔滨工程大学学报》[ISSN:1006-6977/CN:61-1281/TN]

卷:
40
期数:
2019年07期
页码:
1230-1237
栏目:
出版日期:
2019-07-05

文章信息/Info

Title:
Optimization study of the mine-laying strategy on the basis of the particle swarm optimization algorithm with compression factor
作者:
刘启庆1 李强2 蔡尚1 王诗平1 康有为3
1. 哈尔滨工程大学 船舶工程学院, 黑龙江 哈尔滨 150001;
2. 北京航天长征飞行器研究所, 北京 100076;
3. 中集海洋工程有限公司, 广东 深圳 518000
Author(s):
LIU Qiqing1 LI Qiang2 CAI Shang1 WANG Shiping1 KANG Youwei3
1. College of Shipbuilding Engineering, Harbin Engineering University, Harbin 150001, China;
2. Beijing Institute of Space Long March Vehicle, Beijing 100076, China;
3. China International Marine Containers Offshore Engineering Co. Ltd., Shenzhen 518000, China
关键词:
布雷策略粒子群优化算法概率模型散布特性发射坐标目标舰船毁伤概率
分类号:
TJ61
DOI:
10.11990/jheu.201807016
文献标志码:
A
摘要:
为研究目标水域内有限水雷数目的雷阵封锁概率问题,本文运用粒子群优化算法对水雷布阵策略进行优化,建立了计入水雷布放特性的雷阵封锁概率数学模型,验证了数学模型的有效性。针对有限目标水域,为优化布雷数量,采用带压缩因子的粒子群优化算法(CFPSO)对水雷发射坐标进行优化。研究结果表明:目标舰船以均匀概率方式通过雷阵时,采用CFPSO算法优化后的水雷布设方式相比2种传统布设方式均能提高雷阵的封锁概率;针对单艘目标舰船,基于CFPSO算法优化后雷阵仅需7枚水雷即可达到期望封锁概率0.6,其水雷利用率较均匀布设方式提升12.5%;而针对3艘舰船编队,基于CFPSO算法优化后雷阵需要30枚水雷即达到封锁概率,其水雷利用率较均匀布设方式提升14.3%。

参考文献/References:

[1] 傅金祝. 防御布雷和攻势布雷[J]. 水雷战与舰船防护, 2008, 16(4):62-68.FU Jinzhu. Defensive and offensive mining[J]. Mine warfare & ship self-defence, 2008, 16(4):62-68.
[2] 王诗平, 孙士丽, 张阿漫, 等. 冲击波和气泡作用下舰船结构动态响应的数值模拟[J]. 爆炸与冲击, 2011, 31(4):367-372.WANG Shiping, SUN Shili, ZHANG Aman, et al. Numerical simulation of dynamic response of warship structures subjected to underwater explosion shockwaves and bubbles[J]. Explosion and shock waves, 2011, 31(4):367-372.
[3] ZHANG A M, WU W B, LIU Y L, et al. Nonlinear interaction between underwater explosion bubble and structure based on fully coupled model[J]. Physics of fluids, 2017, 29(8):082111.
[4] MING F R, ZHANG A M, XUE Y Z, et al. Damage characteristics of ship structures subjected to shockwaves of underwater contact explosions[J]. Ocean engineering, 2016, 117:359-382.
[5] ZONG Zhi, ZHAO Yanjie, LI Haitao. A numerical study of whole ship structural damage resulting from close-in underwater explosion shock[J]. Marine structures, 2013, 31:24-43.
[6] CAO X Y, MING F R, ZHANG A M, et al. Multi-phase SPH Modelling of air effect on the dynamic flooding of a damaged cabin[J]. Computers & fluids, 2018, 163:7-19.
[7] ZHANG Aman, YANG Wenshan, HUANG Chao, et al. Numerical simulation of column charge underwater explosion based on SPH and BEM combination[J]. Computers & fluids, 2013, 71:169-178.
[8] 衡辉, 李雪, 杨迎化, 等. 自航水雷雷障宽度对舰船毁伤概率影响[J]. 水雷战与舰船防护, 2015, 23(2):35-38.HENG Hui, LI Xue, YANG Yinghua, et al. Influence of slmm obstacles ‘width on warships’ destroy probability[J]. Mine warfare & ship self-defence, 2015, 23(2):35-38.
[9] 尚奇, 李兵, 胡敏. 水雷小子样弹点散布方差估计[J]. 水雷战与舰船防护, 2005, 13(1):30-32.SHANG Qi, LI Bing, HU Min, et al. Small sample placement of mines scattered variance estimation[J]. Mine warfare & ship self-defence, 2005, 13(1):30-32.
[10] 冷相文, 朱红波, 张旭. 自航水雷障碍对舰船目标流毁伤效能评估方法[J]. 南京理工大学学报, 2014, 38(3):371-374.LENG Xiangwen, ZHU Hongbo, ZHANG Xu. Estimate method for damage effectiveness of mobile mine obstacles attacking warship target flows[J]. Journal of Nanjing University of Science and Technology, 2014, 38(3):371-374.
[11] 朱红波, 张旭, 冷相文. 基于遗传算法的自航水雷障碍雷位配置[J]. 弹箭与制导学报, 2012, 32(2):162-164.ZHU Hongbo, ZHANG Xu, LENG Xiangwen. Configuration of planting locations in mobile mine obstacle based on genetic algorithm[J]. Journal of projectiles, rockets, missiles and guidance, 2012, 32(2):162-164.
[12] 王威, 罗朝晖, 王树宗. 常规潜艇攻势布雷效能评估的柔性仿真框架设计[J]. 微计算机信息, 2006, 22(10):283-285, 108.WANG Wei, LUO Zhaohui, WANG Shuzong. Framework layout of flexible simulation model on efficacy evaluation in submarine-laying-mine[J]. Control & automation, 2006, 22(10):283-285, 108.
[13] 徐晓明, 颜冰, 刘群杰. 基于ADC模型的无人布雷系统布雷阶段效能评估[J]. 水雷战与舰船防护, 2016, 24(1):32-38.XU Xiaoming, YAN Bing, LIU Qunjie. Mine laying effectiveness evaluation of underwater unmanned mine laying system based on ADC model[J]. Mine warfare & ship self-defence, 2016, 24(1):32-38.
[14] NGUYEN B, HOPKIN D, YIP H. Considering mine countermeasure exploratory operations conducted by autonomous underwater vehicles[J]. Military operations research, 2014, 19(2):19-34.
[15] 朱红波, 冷相文, 张旭. 一种自航水雷障碍毁伤舰船概率计算方法[J]. 鱼雷技术, 2013, 21(4):313-316.ZHU Hongbo, LENG Xiangwen, ZHANG Xu. A calculation method for of surface warship damage probability of by mobile mine obstacle[J]. Torpedo technology, 2013, 21(4):313-316.
[16] 刘剑, 黄文斌. 一种自航水雷散布概率的计算方法[J]. 鱼雷技术, 2005, 13(3):43-45.LIU Jian, HUANG Wenbin. A calculation method of the dispersion probability of self-propelled mine[J]. Torpedo technology, 2005, 13(3):43-45.
[17] 倪永杰, 王建国. 潜布自航水雷障碍的效力计算方法[J]. 水雷战与舰船防护, 2007, 15(1):8-10.NI Yongjie, WANG Jianguo. Effectiveness calculation method of sub-laid self-propelled mine[J]. Mine warfare & ship self-defence, 2007, 15(1):8-10.
[18] 衡辉, 王新华, 杨迎化. 联合封锁作战中水雷综合运用模式研究[J]. 水雷战与舰船防护, 2017, 25(4):25-27, 33.HENG Hui, WANG Xinhua, YANG Yinghua. Research on integrated application mode of mine in joint blockade war[J]. Mine warfare & ship self-defence, 2017, 25(4):25-27, 33.
[19] ZHANG A M, MING F R, WANG S P. Coupled SPHS-BEM method for transient fluid-structure interaction and applications in underwater impacts[J]. Applied ocean research, 2013, 43:223-233.
[20] 金辉, 贾则, 周学滨, 等. 水面舰船结构在水下近场爆炸作用下冲击响应研究[J]. 兵工学报, 2016, 37(Suppl):91-95.JIN Hui, JIA Ze, ZHOU Xuebin, et al. Research on shock response of surface ship structure under underwater near field explosion[J]. Acta armamentarii, 2016, 37(Suppl):91-95.
[21] XIAO W, ZHANG A M, WANG S P. The whipping response of a fluid filled cylindrical shell subjected to an underwater explosion[J]. Marine structures, 2017, 52:82-93.
[22] ZHANG Aman, ZHOU Weixing, WANG Shiping, et al. Dynamic response of the non-contact underwater explosions on naval equipment[J]. Marine structures, 2011, 24(4):396-411.
[23] 蔡尚. 水下爆炸作用下舰船毁伤效能评估及水雷布阵策略优化研究[D]. 哈尔滨:哈尔滨工程大学, 2018.CAI Shang. Research on evaluation of warship damage and optimization of mine strategy subjected to underwater explosion[D]. Harbin:Harbin Engineering University, 2018.
[24] VAN DEN BERGH F, ENGELBRECHT A P. A cooperative approach to particle swarm optimization[J]. IEEE transactions on evolutionary computation, 2004, 8(3):225-239.
[25] CLERC M, KENNEDY J. The particle swarm-explosion, stability, and convergence in a multidimensional complex space[J]. IEEE transactions on evolutionary computation, 2002, 6(1):58-73.
[26] DELICE Y, AYDOGAN E K, ÖZCAN U, et al. A modified particle swarm optimization algorithm to mixed-model two-sided assembly line balancing[J]. Journal of intelligent manufacturing, 2017, 28(1):23-36.
[27] VENTER G, SOBIESKI J S. Particle swarm optimization[C]//Proceedings of the 9-th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization Conference. Reston, VA, 2002, 4:129-132.

相似文献/References:

[1]秦洪德,石丽丽.一种新型的被动启发式粒子群优化算法[J].哈尔滨工程大学学报,2010,(10):0.
 QIN Hong-De,SHI Li-Li.A new passive heuristic particle swarm optimization algorithm[J].hebgcdxxb,2010,(07):0.
[2]谢业海,林孝工,赵大威,等.基于粒子群优化算法的海浪方向谱估计[J].哈尔滨工程大学学报,2012,(12):1504.[doi:10.3969/j.issn.1006-7043.201202018]
 XIE Yehai,LIN Xiaogong,ZHAO Dawei,et al.Directional wave spectrum estimation based on particle swarm optimization algorithm[J].hebgcdxxb,2012,(07):1504.[doi:10.3969/j.issn.1006-7043.201202018]
[3]严浙平,邓超,赵玉飞,等.无人水下航行器近海底空间路径规划方法[J].哈尔滨工程大学学报,2014,(03):307.[doi:10.3969/j.issn.10067043.201303043]
 YAN Zheping,DENG Chao,ZHAO Yufei,et al.Path planning method for UUV near sea bottom[J].hebgcdxxb,2014,(07):307.[doi:10.3969/j.issn.10067043.201303043]
[4]王振武,孙佳骏,尹成峰.改进粒子群算法优化的支持向量机及其应用[J].哈尔滨工程大学学报,2016,37(12):1728.[doi:10.11990/jheu.201601005]
 WANG Zhenwu,SUN Jiajun,YIN Chengfeng.A support vector machine based on an improved particle swarm optimization algorithm and its application[J].hebgcdxxb,2016,37(07):1728.[doi:10.11990/jheu.201601005]
[5]王皓,高立群,欧阳海滨.多种群随机差分粒子群优化算法及其应用[J].哈尔滨工程大学学报,2017,38(04):652.[doi:10.11990/jheu.201512017]
 WANG Hao,GAO Liqun,OUYANG Haibin.Multi-population random differential particle swarm optimization and its application[J].hebgcdxxb,2017,38(07):652.[doi:10.11990/jheu.201512017]
[6]许爱东,李昊飞,程乐峰,等.PCA-PSO-ELM配网供电可靠性预测模型[J].哈尔滨工程大学学报,2018,39(06):1116.[doi:10.11990/jheu.201611088]
 XU Aidong,LI Haofei,CHENG Lefeng,et al.Prediction model for power supply reliability of distribution network using PCA-PSO-ELM[J].hebgcdxxb,2018,39(07):1116.[doi:10.11990/jheu.201611088]

备注/Memo

备注/Memo:
收稿日期:2018-07-04。
基金项目:国家自然科学基金项目(51879052,11672082);深圳市专项基金项目(JCYJ20160331163751413).
作者简介:刘启庆,男,硕士研究生;王诗平,男,副教授,博士生导师.
通讯作者:王诗平,E-mail:wangshiping@hrbeu.edu.cn
更新日期/Last Update: 2019-07-04