[1]赵勇,李靖,邹丽,等.基于四叉树自适应网格二维晃荡的数值模拟[J].哈尔滨工程大学学报,2019,40(02):266-272.[doi:10.11990/jheu.201807043]
 ZHAO Yong,LI Jing,ZOU Li,et al.Numerical simulation of 2-D sloshing tank using a quadtree-based adaptive solver[J].hebgcdxxb,2019,40(02):266-272.[doi:10.11990/jheu.201807043]
点击复制

基于四叉树自适应网格二维晃荡的数值模拟(/HTML)
分享到:

《哈尔滨工程大学学报》[ISSN:1006-6977/CN:61-1281/TN]

卷:
40
期数:
2019年02期
页码:
266-272
栏目:
出版日期:
2019-02-05

文章信息/Info

Title:
Numerical simulation of 2-D sloshing tank using a quadtree-based adaptive solver
作者:
赵勇1 李靖2 邹丽34 赵延杰5
1. 大连海事大学 船舶与海洋工程学院, 辽宁 大连 116026;
2. 上海交通大学 船舶海洋与建筑工程学院, 上海 200240;
3. 大连理工大学 工业装备结构分析国家重点实验室 船舶工程学院, 辽宁 大连 116024;
4. 高技术船舶与深海开发装备协同创新中心, 上海 200240;
5. 中国船舶科学研究中心 海洋防务技术创新中心, 江苏 无锡 214082
Author(s):
ZHAO Yong1 LI Jing2 ZOU Li34 ZHAO Yanjie5
1. Naval Architecture and Ocean Engineering College, Dalian Maritime University, Dalian 116026, China;
2. School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240, China;
3. School of Naval Architecture, State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology, Dalian 116024, China;
4. Collaborative Innovation Center for Advanced Ship and Deep-Sea Exploration, Shanghai 200240, China;
5. Marine Defense Technology Innovation Center, China Ship Scientific Research Center, Wuxi 214082, China
关键词:
晃荡自适应网格四叉树结构VOF模型数值模拟N-S方程
分类号:
U661.1
DOI:
10.11990/jheu.201807043
文献标志码:
A
摘要:
为提高液仓晃荡数值模拟精度和效率,本文结合VOF和树形自适应网格,直接离散不可压粘性流体的N-S方程,对于纵摇和水平外激励所引起的二维液体强迫晃荡进行数值模拟。将计算得到的几种工况下的自由表面升高,力和力矩同解析解、实验值进行了对比,验证了该数值方法对于此问题的有效性。通过网格自适应加密,不仅提高了计算效率,而且比势流解更为精确。

参考文献/References:

[1] 朱仁庆, 吴有生, 彭兴宁, 等. 船舶液体晃荡动力学的研究方法及进展[J]. 华东船舶工业学院学报, 1999, 13(1):45-50.ZHU Renqing, WU Yousheng, PENG Xingning, et al. Research methods and progress of ship sloshing dynamics[J]. Journal of East China shipbuilding institute, 1999, 13:45-50.
[2] ABRAMSON H N. The dynamic behavior of liquids in moving containers[R]. Washington, DC:NASA, 1966.
[3] VALTINSEN O M. A nonlinear theory of sloshing in rectangular tanks[J].Journal of ship research, 1974, 18(4):224-241.
[4] FALTINSEN O M. A numerical nonlinear method of sloshing in tanks with two-dimensional flow[J]. Journal of ship research, 1978, 22(3):193-202.
[5] NAKAYAMA T, WASHIZU K. The boundary element method applied to the analysis of two-dimensional nonlinear sloshing problems[J]. International journal for numerical methods in engineering, 1981, 17(11):1631-1646.
[6] WATERHOUSE D D. Resonant sloshing near a critical depth[J]. Journal of fluid mechanics, 1994, 281:313-318.
[7] VERHAGEN J H G, VAN WIJNGAARDEN L. Non-linear oscillations of fluid in a container[J]. Journal of fluid mechanics, 1965, 22(4):737-751.
[8] ARMENIO V, LA ROCCA M. On the analysis of sloshing of water in rectangular containers:numerical study and experimental validation[J]. Ocean engineering, 1996, 23(8):705-739.
[9] 朱仁庆, 吴有生, ATILLA I. 液体晃荡数值模拟研究综述(英文)[J]. 中国造船, 2004, 45(2):14-27.ZHU Renqing, WU Yousheng, ATILLA I. Numerical simulation of liquid sloshing-a review[J] Shipbuilding of China, 2004, 45(2):14-27.
[10] LIU Dongxi, TANG Wenyong, WANG Jin, et al. Hybrid RANS/LES simulation of sloshing flow in a rectangular tank with and without baffles[J]. Ships and offshore structures, 2017, 12(8):1005-1015.
[11] 邓棋, 尤云祥, 张新曙. 超谐共振横摇下液舱晃荡特性数值研究[J]. 水动力学研究与进展, 2016, 31(5):525-534.DENG Qi, YOU Yunxiang, ZHANG Xinshu. Numerical study on tank sloshing characteristics under super-harmonic resonance rolling[J] Journal of hydrodynamics, 2016, 31(5):525-534.
[12] POPINET S. Gerris:a tree-based adaptive solver for the incompressible Euler equations in complex geometries[J]. Journal of computational physics, 2003, 190(2):572-600.
[13] CELEBI M S, AKYILDIZ H. Nonlinear modeling of liquid sloshing in a moving rectangular tank[J]. Ocean engineering, 2002, 29(12):1527-1553.
[14] ALEMI ARDAKANI H, BRIDGES T J. Shallow-water sloshing in vessels undergoing prescribed rigid-body motion in two dimensions[J]. European journal of mechanics-B/fluids, 2012, 31:30-43.
[15] BELL J B, COLELLA P, GLAZ H M. A second-order projection method for the incompressible navier-stokes equations[J]. Journal of computational physics, 1989, 85(2):257-283.
[16] KHOKHLOV A M. Fully threaded tree algorithms for adaptive refinement fluid dynamics simulations[J]. Journal of computational physics, 1998, 143(2):519-543.
[17] POPINET S. An accurate adaptive solver for surface-tension-driven interfacial flows[J]. Journal of computational physics, 2009, 228(16):5838-5866.
[18] DEBAR R B. Fundamentals of the KRAKEN Code[R]. United States:LLNL, 1974.
[19] HIRT C W, NICHOLS B D. Volume of fluid (VOF) method for the dynamics of free boundaries[J]. Journal of computational physics, 1981, 39(1):201-225.
[20] GUEYFFIER D, LI Jie, NADIM A, et al. Volume-of-fluid interface tracking with smoothed surface stress methods for three-dimensional flows[J]. Journal of computational physics, 1998, 152(2):423-456.
[21] AKYILDIZ H, VNAL N E. Sloshing in a three-dimensional rectangular tank:numerical simulation and experimental validation[J]. Ocean engineering, 2006, 33(16):2135-2149.
[22] FALTINSEN O M, ROGNEBAKKE O F, LUKOVSKY I A, et al. Multidimensional modal analysis of nonlinear sloshing in a rectangular tank with finite water depth[J]. Journal of fluid mechanics, 2000, 407:201-234.

备注/Memo

备注/Memo:
收稿日期:2018-07-10。
基金项目:国家自然科学基金项目(51679021);博士后面上基金项目(2016M601294);辽宁省自然科学基金项目(201602067).
作者简介:赵勇,男,副教授;李靖,男,博士研究生;邹丽,女,教授,博士生导师.
通讯作者:李靖,E-mail:lijing_@sjtu.edu.cn
更新日期/Last Update: 2019-01-30