[1]夏国清,韩志伟,赵博,等.基于量子蚁群算法的无人水面艇航迹规划[J].哈尔滨工程大学学报,2019,40(07):1263-1268.[doi:10.11990/jheu.201807059]
 XIA Guoqing,HAN Zhiwei,ZHAO Bo,et al.Unmanned surface vessel path planning based on quantum ant colony algorithm[J].hebgcdxxb,2019,40(07):1263-1268.[doi:10.11990/jheu.201807059]
点击复制

基于量子蚁群算法的无人水面艇航迹规划(/HTML)
分享到:

《哈尔滨工程大学学报》[ISSN:1006-6977/CN:61-1281/TN]

卷:
40
期数:
2019年07期
页码:
1263-1268
栏目:
出版日期:
2019-07-05

文章信息/Info

Title:
Unmanned surface vessel path planning based on quantum ant colony algorithm
作者:
夏国清1 韩志伟1 赵博1 杨颖2
1. 哈尔滨工程大学 自动化学院, 黑龙江 哈尔滨 150001;
2. 中国船舶工业集团有限公司 第七〇八研究所, 上海 200011
Author(s):
XIA Guoqing1 HAN Zhiwei1 ZHAO Bo1 YANG Ying2
1. College of Automation, Harbin Engineering University, Harbin 150001, China;
2
关键词:
无人水面艇航迹搜索量子理论蚁群优化航迹长度能量消耗障碍规避
分类号:
TP249
DOI:
10.11990/jheu.201807059
文献标志码:
A
摘要:
针对无人水面艇的航迹规划问题,本文采用了量子蚁群算法在海洋环境中为无人水面艇规划出一条航程最短、航行能耗最低和能够安全避障的航迹。量子蚁群算法既能体现量子并行计算的高效性,又拥有蚁群算法中较好的寻优能力。仿真实验结果表明:该算法能够避免局部极值和拥有比蚁群算法更快的收敛速度,并可以规划出无人水面艇在复杂海洋环境中的优化航迹。

参考文献/References:

[1] CHU K, LEE M, SUNWOO M. Local path planning for off-road autonomous driving with avoidance of static obstacles[J]. IEEE transactions on intelligent transportation systems, 2012, 13(4):1599-1616.
[2] NIU Hanlin, LU Yu, SAVVARIS A, et al. An energy-efficient path planning algorithm for unmanned surface vehicles[J]. Ocean engineering, 2018, 161:308-321.
[3] 唐平鹏. 复杂海况下水面无人艇分层危险规避方法研究[D]. 哈尔滨:哈尔滨工程大学, 2014.TANG Pingpeng. Research on hierarchical obstacle avoidance for unmanned surface vehicle in complicated marine environments[D]. Harbin:Harbin Engineering University, 2014.
[4] KIM H, KIM S H, JEON M, et al. A study on path optimization method of an unmanned surface vehicle under environmental loads using genetic algorithm[J]. Ocean engineering, 2017, 142:616-624.
[5] MA Yong, HU Mengqi, YAN Xinping. Multi-objective path planning for unmanned surface vehicle with currents effects[J]. ISA transactions, 2018, 75:137-156.
[6] WU Peng, XIE Shaorong, LIU Hengli, et al. Autonomous obstacle avoidance of an unmanned surface vehicle based on cooperative manoeuvring[J]. Industrial robot:an international journal, 2017, 44(1):64-74.
[7] AHMED F, DEB K. Multi-objective optimal path planning using elitist non-dominated sorting genetic algorithms[J]. Soft computing, 2013, 17(7):1283-1299.
[8] 李明, 李铜桥. 基于非奇异终端滑模的欠驱动UUV航迹跟踪控制[J]. 应用科技, 2018, 45(2):11-16. LI Ming, LI Tongqiao. Path-following control for an underactuated UUV based on non-singular terminal sliding mode[J]. Applied science and technology, 2018, 45(2):11-16.
[9] 马英凯, 刘志林, 冯江, 等. 基于航向控制的欠驱动船舶曲线航迹控制[J]. 应用科技, 2018, 45(1):26-32. MA Yingkai, LIU Zhilin, FENG Jiang, et al. Control on the curve track of an underactuated surface vessel based on heading control[J]. Applied science and technology, 2018, 45(1):26-32.
[10] 韩鹏, 刘志林, 周泽才, 等. 基于LOS法的自航模航迹跟踪控制算法实现[J]. 应用科技, 2018, 45(3):66-70. HAN Peng, LIU Zhilin, ZHOU Zecai, et al. Path tracking control algorithm based on LOS method for surface self-propulsion vessel[J]. Applied science and technology, 2018, 45(3):66-70.
[11] FOSSEN T I. Handbook of marine craft hydrodynamics and motion control[M]. New York:Wiley, 2011.
[12] KIM H, KIM D, SHIN J U, et al. Angular rate-constrained path planning algorithm for unmanned surface vehicles[J]. Ocean engineering, 2014, 84:37-44.
[13] LEE T, KIM H, CHUNG H, et al. Energy efficient path planning for a marine surface vehicle considering heading angle[J]. Ocean engineering, 2015, 107:118-131.
[14] NARAYANAN A, MOORE M. Quantum-inspired genetic algorithms[C]//Proceedings of IEEE international conference on evolutionary computation. IEEE, 1996:61-66.
[15] HAN K H, KIM J H. Quantum-inspired evolutionary algorithm for a class of combinatorial optimization[J]. IEEE transactions on evolutionary computation, 2002, 6(6):580-593.
[16] 李士勇, 李盼池. 量子计算与量子优化算法[M]. 哈尔滨:哈尔滨工业大学出版社, 2009:108-112.LI Shiyong, LI Panchi. Quantum computation and quantum optimization algorithms[M]. Harbin:Harbin Institute of Technology Press, 2009:108-112.
[17] 李士勇, 柏继云. 连续函数寻优的改进量子扩展蚁群算法[J]. 哈尔滨工程大学学报, 2012, 33(1):80-84.LI Shiyong, BAI Jiyun. Extended quantum ant colony algorithm for continuous function optimization[J]. Journal of Harbin Engineering University, 2012, 33(1):80-84.
[18] 王芳. 基于量子蚁群算法的多无人机协同航迹规划研究[D]. 哈尔滨:哈尔滨工业大学, 2015.WANG Fang. Collaborative path planning of UAVs based on quantum ant colony algorithm[D]. Harbin:Harbin Institute of Technology, 2015.
[19] LIU Min, ZHANG Feng, MA Yunlong, et al. Evacuation path optimization based on quantum ant colony algorithm[J]. Advanced engineering informatics, 2016, 30(3):259-267.
[20] 何小锋, 马良. 带时间窗车辆路径问题的量子蚁群算法[J]. 系统工程理论与实践, 2013, 33(5):1255-1261.HE Xiaofeng, MA Liang. Quantum-inspired ant colony algorithm for vehicle routing problem with time windows[J]. Systems engineering-theory & practice, 2013, 33(5):1255-1261.

备注/Memo

备注/Memo:
收稿日期:2018-07-14。
基金项目:中央高校基本科研业务费专项资金项目(HEUCFJ180404).
作者简介:夏国清,男,教授,博士生导师;韩志伟,男,博士研究生.
通讯作者:韩志伟,E-mail:hanzhiwei@hrbeu.edu.cn
更新日期/Last Update: 2019-07-04