[1]陈宇,刘元安,邵子豪.基于消错决策理论的数据质量评估方法[J].哈尔滨工程大学学报,2018,39(12):2040-2045.[doi:10.11990/jheu.201808003]
 CHEN Yu,LIU Yuanan,SHAO Zihao.Data quality evaluation method based on the error-eliminating decision-making theory[J].hebgcdxxb,2018,39(12):2040-2045.[doi:10.11990/jheu.201808003]
点击复制

基于消错决策理论的数据质量评估方法(/HTML)
分享到:

《哈尔滨工程大学学报》[ISSN:1006-6977/CN:61-1281/TN]

卷:
39
期数:
2018年12期
页码:
2040-2045
栏目:
出版日期:
2018-12-05

文章信息/Info

Title:
Data quality evaluation method based on the error-eliminating decision-making theory
作者:
陈宇1 刘元安1 邵子豪2
1. 北京邮电大学 电子工程学院, 北京 100876;
2. 哈尔滨工程大学 计算机科学与技术学院, 黑龙江 哈尔滨 150001
Author(s):
CHEN Yu1 LIU Yuanan1 SHAO Zihao2
1. School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China;
2. College of Computer Science and Technology, Harbin Engineering University, Harbin 150001, China
关键词:
移动群智感知消错决策理论数据质量评估异常数据
分类号:
TP393
DOI:
10.11990/jheu.201808003
文献标志码:
A
摘要:
针对移动群智感知中数据质量难以保障和评估的问题,从规避错误的角度出发,提出了一种基于消错决策理论的移动群智感知数据质量评估方法。通过引入消错决策理论来评估移动用户所提供的感知数据质量,对低质量及异常数据进行识别;考虑到不同感知任务具有不同的数据质量需求,引入权值因子实现数据质量的排序与优化评估。实验结果表明:所提出的方法不仅达到了对低质量和异常数据的准确识别的目标,还实现了对不同任务下的数据质量按需排序。在对低质量和异常数据识别方面,相对于拉依达准则,具有更高的识别准确性;在对数据质量排序上,相对于理想点法、TOPSIS法,具有准确性高和简单高效的优点。

参考文献/References:

[1] ZHANG Xinglin, YANG Zheng, SUN Wei, et al. Incentives for mobile crowd sensing:a survey[J]. IEEE communications surveys & tutorials, 2016, 18(1):54-67.
[2] ALVEAR O, CALAFATE C, CANO J C, et al. Crowdsensing in smart cities:overview, platforms, and environment sensing issues[J]. Sensors, 2018, 18(2):460.
[3] WANG Xiong, ZHANG Jinbei, TIAN Xiaohua, et al. Crowdsensing-based consensus incident report for road traffic acquisition[J]. IEEE transactions on intelligent transportation systems, 2018, 19(8):2536-2547.
[4] GUO Bin, WANG Zhu, YU Zhiwen, et al. Mobile crowd sensing and computing:The review of an emerging human-powered sensing paradigm[J]. ACM computing surveys,2015, 48(1):7.
[5] JIANG Changkun, GAO Lin, DUAN Lingjie, et al. Exploiting data reuse in mobile crowdsensing[C]//2016 IEEE Global Communications Conference. Washington, DC, USA, 2017:1-6.
[6] DU Pengfei, YANG Qinghai, HE Qingsu, et al. Energy-aware quality of information maximisation for wireless sensor networks[J]. IET communications, 2016, 10(17):2281-2289.
[7] 吴垚, 曾菊儒, 彭辉, 等. 群智感知激励机制研究综述[J]. 软件学报, 2016, 27(8):2025-2047.WU Yao, ZENG Juru, PENG Hui, et al. Survey on incentive mechanisms for crowd sensing[J]. Journal of software, 2016, 27(8):2025-2047.
[8] 南文倩, 郭斌, 陈荟慧, 等. 基于跨空间多元交互的群智感知动态激励模型[J]. 计算机学报, 2015, 38(12):2412-2425.NAN Wenqian, GUO Bin, CHEN Huihui, et al. A cross-space, multi-interaction-based dynamic incentive mechanism for mobile crowd sensing[J]. Chinese journal of computers, 2015, 38(12):2412-2425.
[9] PENG Dan, WU Fan, CHEN Guihai. Data quality guided incentive mechanism design for crowdsensing[J]. IEEE transactions on mobile computing, 2018, 17(2):307-319.
[10] ZHOU Tongqing, CAI Zhiping, CHEN Yueyue, et al. Improving data credibility for mobile crowdsensing with clustering and logical reasoning[C]//Second International Conference on Cloud Computing and Security. Nanjing, 2016:138-150.
[11] LIU Shengzhong, ZHENG Zhenzhe, WU Fan, et al. Context-aware data quality estimation in mobile crowdsensing[C]//IEEE INFOCOM 2017-IEEE Conference on Computer Communications. Atlanta, GA, USA, 2017:1-9.
[12] SUROWIECKI J. The wisdom of crowds:Why the many are smarter than the few and how collective wisdom shapes business, economics, societies and nations[J]. Personnel psychology, 2006, 59(4):982-985.
[13] MALONE T W, LAUBACHER R, DELLAROCAS C. Harnessing crowds:mapping the genome of collective intelligence. MIT Sloan Research Paper No. 4732-09[R]. Cambridge, Massachusetts:Massachusetts Institute of Technology, 2009.
[14] DOAN A, RAMAKRISHNAN R, HALEVY A Y. Crowdsourcing systems on the world-wide web[J]. Communications of the ACM, 2011, 54(4):86-96.
[15] LANE N D, MILUZZO E, LU Hong, et al. A survey of mobile phone sensing[J]. IEEE communications magazine, 2010, 48(9):140-150.
[16] HUANG Haoran, CAI Ken. A method of fuzzy multiple attribute decision making based on the error-eliminating theory[J]. Journal of intelligent & fuzzy systems, 2016, 31(4):2119-2127.
[17] MARJANOVIC M, SKORIN-KAPOV L, PRIPUZIC K, et al. Energy-aware and quality-driven sensor management for green mobile crowd sensing[J]. Journal of network and computer applications, 2016, 59:95-108.
[18] 丁小欧, 王宏志, 张笑影, 等. 数据质量多种性质的关联关系研究[J]. 软件学报, 2016, 27(7):1626-1644.DING Xiaoou, WANG Hongzhi, ZHANG Xiaoying, et al. Association relationships study of multi-dimensional data quality[J]. Journal of software, 2016, 27(7):1626-1644.

备注/Memo

备注/Memo:
收稿日期:2018-8-1。
基金项目:中国科学院重点部署项目(ZDRW-KT-2016-02).
作者简介:陈宇(1975-),女,博士研究生;刘元安(1963-),男,教授,博士生导师.
通讯作者:陈宇,E-mail:chenyu_bupt@126.com.
更新日期/Last Update: 2018-12-01