[1]彭英,杨平,姜伟.考虑接触的斜裂纹动态应力强度因子分析[J].哈尔滨工程大学学报,2019,40(08):1399-1405.[doi:10.11990/jheu.201808082]
 PENG Ying,YANG Ping,JIANG Wei.Analysis of dynamic stress intensity factors for inclined cracks considering contact interaction[J].hebgcdxxb,2019,40(08):1399-1405.[doi:10.11990/jheu.201808082]
点击复制

考虑接触的斜裂纹动态应力强度因子分析(/HTML)
分享到:

《哈尔滨工程大学学报》[ISSN:1006-6977/CN:61-1281/TN]

卷:
40
期数:
2019年08期
页码:
1399-1405
栏目:
出版日期:
2019-08-05

文章信息/Info

Title:
Analysis of dynamic stress intensity factors for inclined cracks considering contact interaction
作者:
彭英1 杨平12 姜伟1
1. 武汉理工大学 交通学院, 湖北 武汉 430063;
2. 武汉理工大学 高性能船舶技术教育部重点实验室, 湖北 武汉 430063
Author(s):
PENG Ying1 YANG Ping12 JIANG Wei1
1. School of Transportation, Wuhan University of Technology, Wuhan 430063, China;
2. Key Laboratory of High Performance Ship Technology(Wuhan University of Technology), Ministry of Education, Wuhan 430063, China
关键词:
斜裂纹拉伸冲击载荷动态应力强度因子相互作用积分裂纹面接触载荷形式裂纹参数接触应力
分类号:
U661.72
DOI:
10.11990/jheu.201808082
文献标志码:
A
摘要:
为了研究含中心穿透斜裂纹的有限板在拉伸冲击载荷下裂纹尖端的动态应力强度因子,本文采用有限元方法建立模型进行系列分析。裂尖的应力奇异性通过1/4节点奇异单元来模拟,应用相互作用积分法计算动态应力强度因子,考虑了裂纹面接触作用、冲击载荷形式、裂纹长度、裂纹角度及裂纹位置等参数的影响,并给出了接触应力随时间的变化曲线。数值结果表明:裂纹面的接触作用可消除负的Ⅰ型动态应力强度因子,接触刚度比摩擦系数的影响明显,载荷形式在总冲量不变的情况下对动态应力强度因子的影响也非常大,而裂纹长度等裂纹参数对Ⅰ型动态应力强度因子的影响比Ⅱ型显著。

参考文献/References:

[1] CHEN Y M. Numerical computation of dynamic stress intensity factors by a Lagrangian finite-difference method (the HEMP code)[J]. Engineering fracture mechanics, 1975, 7(4):653-660.
[2] LIN X, BALLMANN J. Re-consideration of Chen’s problem by finite difference method[J]. Engineering fracture mechanics, 1993, 44(5):735-739.
[3] SONG S H, PAULINO G H. Dynamic stress intensity factors for homogeneous and smoothly heterogeneous materials using the interaction integral method[J]. International journal of solids and structures, 2006, 43(16):4830-4866.
[4] SARIBAY M, NIED H F. Dynamic stress intensity factors for suddenly loaded structures using enriched finite element[J]. Theoretical and applied fracture mechanics, 2014, 70:59-67.
[5] IDESMAN A, BHUIYAN A, FOLEY J R. Accurate finite element simulation of stresses for stationary dynamic cracks under impact loading[J]. Finite elements in analysis and design, 2017, 126:26-38.
[6] 解德, 钱勤, 李长安. 断裂力学中的数值计算方法及工程应用[M]. 北京:科学出版社, 2009:134-139.
[7] 姜伟, 杨平, 董琴. 平板穿透裂纹尖端动态应力强度因子研究[J]. 武汉理工大学学报(交通科学与工程版), 2016, 40(5):820-825.JIANG Wei, YANG Ping, DONG Qin. Research on dynamic stress intensity factors for through-cracked plates[J]. Journal of Wuhan University of Technology (transportation science & engineering), 2016, 40(5):820-825.
[8] 王立清, 盖秉政. 有限板中圆孔边单边斜裂纹动态应力强度因子的数值计算[J]. 工程力学, 2009, 26(3):9-14.WANG Liqing, GAI Bingzheng. Numerical calculation of dynamic stress intensity factors for a single hole-edge slant crack in a finite plate[J]. Engineering mechanics, 2009, 26(3):9-14.
[9] 王立清, 盖秉政. 裂纹面接触摩擦对双-边裂纹板动态应力强度因子的影响[J]. 工程力学, 2009, 26(7):7-11.WANG Liqing, GAI Bingzheng. Effect of crack face contact and friction on dynamic stress intensity factors for a double-edge cracked plate[J]. Engineering mechanics, 2009, 26(7):7-11.
[10] MOËS N, DOLBOW J, BELYTSCHKO T. A finite element method for crack growth without remeshing[J]. International journal for numerical methods in engineering, 1999, 46(1):131-150.

备注/Memo

备注/Memo:
收稿日期:2018-8-31。
基金项目:国家自然科学基金项目(51479153).
作者简介:彭英,女,博士后;杨平,男,教授,博士生导师.
通讯作者:彭英,E-mail:pengy027@163.com.
更新日期/Last Update: 2019-08-05