[1]程坤,谭思超.海洋条件下反应堆热工水力特性研究进展[J].哈尔滨工程大学学报,2019,40(04):655-662.[doi:10.11990/jheu.201811023]
 CHENG Kun,TAN Sichao.Research progress of nuclear reactor thermal-hydraulic characteristics under ocean conditions[J].hebgcdxxb,2019,40(04):655-662.[doi:10.11990/jheu.201811023]
点击复制

海洋条件下反应堆热工水力特性研究进展(/HTML)
分享到:

《哈尔滨工程大学学报》[ISSN:1006-6977/CN:61-1281/TN]

卷:
40
期数:
2019年04期
页码:
655-662
栏目:
出版日期:
2019-04-05

文章信息/Info

Title:
Research progress of nuclear reactor thermal-hydraulic characteristics under ocean conditions
作者:
程坤 谭思超
哈尔滨工程大学 核安全与仿真技术国防重点学科实验室, 黑龙江 哈尔滨 150001
Author(s):
CHENG Kun TAN Sichao
National Defense Key Subject Laboratory for Nuclear Safety and Simulation Technology, Harbin Engineering University, Harbin 150001, China
关键词:
流动波动汽泡行为临界热流密度自然循环海洋条件热工水力浮动反应堆船用核动力
分类号:
TL339
DOI:
10.11990/jheu.201811023
文献标志码:
A
摘要:
浮动核电站受海面风浪影响会产生多种运动形式,造成堆芯热工水力特性改变,威胁反应堆运行安全。针对我国浮动核电站的研发设计需求,对海洋条件下反应堆热工水力特性的国内外研究进展进行综述,重点关注了海洋条件下流动换热、汽泡行为、流动不稳定性与临界热流密度等方面的研究进展,并提出了未来研究中需重点关注的内容。

参考文献/References:

[1] LEE K H, KIM M G, LEE J I, et al. Recent advances in ocean nuclear power plants[J]. Energies, 2015, 8(10):11470-11492.
[2] 李佳佳, 刘峰, 赵芳. 国外海上浮动核电站的产业发展现状[J]. 船舶工程, 2017, 39(4):7-11. LI Jiajia, LIU Feng, ZHAO Fang. Development status of overseas offshore floating nuclear plant industry[J]. Ship Engineering, 2017, 39(4):7-11.
[3] 马建, 李隆键, 黄彦平, 等. 海洋条件下舰船反应堆热工水力特性研究现状[J]. 核动力工程, 2011, 32(2):91-96. MA Jian, LI Longjian, HUANG Yanping, et al. Progress in investigations on thermo-hydraulic characteristics of ship nuclear reactors under ocean conditions[J]. Nuclear Power Engineering, 2011, 32(2):91-96.
[4] YAN B H. Review of the nuclear reactor thermal hydraulic research in ocean motions[J]. Nuclear Engineering and Design, 2017, 313:370-385.
[5] 高璞珍, 庞凤阁, 王兆祥. 核动力装置一回路冷却剂受海洋条件影响的数学模型[J]. 哈尔滨工程大学学报, 1997, 18(1):24-27. GAO Puzhen, PANG Fengge, WANG Zhaoxiang. Mathematical model of primary coolant in nuclear power plant influenced by ocean conditions[J]. Journal of Harbin Engineering Univeristy, 1997, 18(1):24-27.
[6] TAN Sichao, WANG Zhanwei, WANG Chang, et al. Flow fluctuations and flow friction characteristics of vertical narrow rectangular channel under rolling motion conditions[J]. Experimental Thermal and Fluid Science, 2013, 50:69-78.
[7] WANG Chang, WANG Shaowu, WANG Hao, et al. Investigation of flow pulsation characteristic in single-phase forced circulation under rolling motion[J]. Annals of Nuclear Energy, 2014, 64:50-56.
[8] 曹夏昕, 阎昌琪, 孙立成, 等. 摇摆状态下竖直管内单相水阻力特性实验研究[J]. 核动力工程, 2007, 28(3):51-55. CAO Xiaxin, YAN Changqi, SUN Licheng, et al. Pressure drop characteristics of single-phase flow in vertical rolling pipes[J]. Nuclear Power Engineering, 2007, 28(3):51-55.
[9] XING Dianchuan, YAN Changqi, SUN Licheng, et al. Effect of rolling motion on single-phase laminar flow resistance of forced circulation with different pump head[J]. Annals of Nuclear Energy, 2013, 54:141-148.
[10] 闫超星. 摇摆对棒束通道内流动阻力特性的影响研究[D]. 哈尔滨:哈尔滨工程大学, 2015. YAN Chaoxing. Investigations on effects of rolling motion on characteristics of flow resistance in rod bundle[D]. Harbin:Harbin Engineering Univerisity, 2015.
[11] CHEN Chong, GAO Puzhen, TAN Sichao, et al. Effect of rolling motion on two-phase frictional pressure drop of boiling flows in a rectangular narrow channel[J]. Annals of Nuclear Energy, 2015, 83:125-136.
[12] 王畅. 周期力场作用下矩形通道内流动与传热特性研究[D]. 哈尔滨:哈尔滨工程大学, 2013. WANG Chang. Study of flow and heat transfer in rectangular channel in periodic force field[D]. Harbin:Harbin Engineering Univerisity, 2013.
[13] CHEN Chong, GAO Puzhen, TAN Sichao, et al. Effects of rolling motion on thermal-hydraulic characteristics of boiling flow in rectangular narrow channel[J]. Annals of Nuclear Energy, 2015, 76:504-513.
[14] CHEN Chong, GAO Puzhen, TAN Sichao, et al. Boiling heat transfer characteristics of pulsating flow in rectangular channel under rolling motion[J]. Experimental Thermal and Fluid Science, 2016, 70:246-254.
[15] MURATA H, IYORI I, KOBAYASHI M. Natural circulation characteristics of a marine reactor in rolling motion[J]. Nuclear Engineering and Design, 1990, 118(2):141-154.
[16] MURATA H, SAWADA K I, KOBAYASHI M. Experimental investigation of natural convection in a core of a marine reactor in rolling motion[J]. Journal of Nuclear Science and Technology, 2000, 37(6):509-517.
[17] ISHIDA T, YORITSUNE T. Effects of ship motions on natural circulation of deep sea research reactor DRX[J]. Nuclear Engineering and Design, 2002, 215(1-2):51-67.
[18] 谭思超, 高璞珍, 苏光辉. 摇摆运动条件下自然循环流动的实验和理论研究[J]. 哈尔滨工程大学学报, 2007, 28(11):1213-1217. TAN Sichao, GAO Puzhen, SU Guanghui. Experimental and theoretical study on natural circulation flow under rolling motion condition[J]. Journal of Harbin Engineering University, 2007, 28(11):1213-1217.
[19] TAN Sichao, SU Guanghui, GAO Puzhen. Experimental and theoretical study on single-phase natural circulation flow and heat transfer under rolling motion condition[J]. Applied Thermal Engineering, 2009, 29(14/15):3160-3168.
[20] TAN Sichao, SU Guanghui, GAO Puzhen. Heat transfer model of single-phase natural circulation flow under a rolling motion condition[J]. Nuclear Engineering and Design, 2009, 239(10):2212-2216.
[21] 黄振, 高璞珍, 谭思超, 等. 摇摆对传热影响的机理分析[J]. 核动力工程, 2010, 31(3):50-54. HANG Zhen, GAO Puzhen, TAN Sichao, et al. Mechanism analysis of effect of rolling motion on heat transfer[J]. Nuclear Power Engineering, 2010, 31(3):50-54.
[22] 高璞珍, 庞凤阁, 刘殊一, 等. 倾斜对强迫循环和自然循环影响的比较[J]. 核科学与工程, 1997, 17(2):179-183. GAO Puzhen, PANG Fengge, LIU Shuyi, et al. Effects of listing upon forced circulation and natural circulation[J]. Chinese Journal of Nuclear Science and Engineering, 1997, 17(2):179-183.
[23] 高璞珍, 王兆祥, 刘顺隆. 起伏对强制循环和自然循环的影响[J]. 核科学与工程, 19(2):116-120. GAO Puzhen, WANG Zhaoxiang, LIU Shunlong. Effects of heaving upon forced circulation and natural circulation[J]. Chinese Journal of Nuclear Science and Engineering, 1999, 19(2):116-120.
[24] KIM J H, KIM T W, LEE S M, et al. Study on the natural circulation characteristics of the integral type reactor for vertical and inclined conditions[J]. Nuclear Engineering and Design, 2001, 207(1):21-31.
[25] 姜胜耀, 杨星团, 宫厚军, 等. 起伏因素影响自然循环流动的机理分析[J]. 原子能科学技术, 2009, 43(S1):92-96. JIANG Shengyao, YANG Xingtuan, GONG Houjun, et al. Mechanism of natural circulation taking account into heaving movement[J]. Atomic Energy Science and Technology, 2009, 43(S1):92-96.
[26] 杨星团, 朱宏晔, 宫厚军, 等. 对称双环路倾斜条件下自然循环特性研究[J]. 核动力工程, 2013, 34(5):124-127. YANG Xingtuan, ZHU Hongye, GONG Houjun, et al. Natural circulation characteristics in a symmetrical two-circuit loop under inclined condition[J]. Nuclear Power Engineering, 2013, 34(5):124-127.
[27] 宫厚军, 杨星团, 黄彦平, 等. 倾斜条件下一体化反应堆模拟回路单相自然循环实验与数值研究[J]. 核动力工程, 2014, 35(5):89-93. GONG Houjun, YANG Xingtuan, HUANG Yanpin, et al. Experimental and numerical study on natural circulation of integrated reactor under inclination condition[J]. Nuclear Power Engineering, 2014, 35(5):89-93.
[28] HONG Gang, YAN Xiao, YANG Yanhua, et al. Bubble departure size in forced convective subcooled boiling flow under static and heaving conditions[J]. Nuclear Engineering and Design, 2012, 247:202-211.
[29] 秦胜杰, 高璞珍. 摇摆运动对过冷沸腾流体中汽泡受力的影响[J]. 核动力工程, 2008, 29(2):20-23. QIN Shengjie, GAO Puzhen. Effect of rolling motion on forces acting on bubbles in sub-cooled boilina flow[J]. Nuclear Power Engineering, 2008, 29(2):20-23.
[30] 谢添舟, 陈炳德, 闫晓, 等. 摇摆条件下矩形窄缝通道内汽泡脱离直径实验研究[J]. 原子能科学技术, 2014, 48(4):637-641. XIE Tianzhou, CHEN Bingde, YAN Xiao, et al. Experimental research on bubble departure diameter in narrow rectangular channel under rolling motion[J]. Atomic Energy Science and Technology, 2014, 48(4):637-641.
[31] 谢添舟, 陈炳德, 闫晓, 等. 摇摆条件下矩形窄缝通道内汽泡脱离直径模型构建及分析[J]. 原子能科学技术, 2014, 48(5):801-805. XIE Tianzhou, CHEN Bingde, YAN Xiao, et al. Model development and analysis on bubble departure diameter in narrow rectangular channel under rolling motion[J]. Atomic Energy Science and Technology, 2014, 48(5):801-805.
[32] 李少丹. 海洋条件下局部汽泡行为及沸腾换热特性研究[D]. 哈尔滨:哈尔滨工程大学, 2015. LI Shaodan. Study of local bubble behavior and boiling heat transfer characteristics under ocean condition[D]. Harbin:Harbin Engineering Univerisity, 2015.
[33] 阎昌琪, 于凯秋, 栾锋, 等. 摇摆对气-液两相流流型及空泡份额的影响[J]. 核动力工程, 2008, 29(4):35-38, 49. YAN Changqi, YU Kaiqiu, LUAN Feng, et al. Rolling effects on two-phase flow pattern and void fraction[J]. Nuclear Power Engineering, 2008, 29(4):35-38, 49.
[34] 王广飞, 阎昌琪, 曹夏昕, 等. 摇摆状态下窄矩形通道内两相流流型特性研究[J]. 原子能科学技术, 2011, 45(11):1329-1333. WANG Guangfei, YAN Changqi, CAO Xiaxin, et al. Flow pattern characteristics of two-phase flow through narrow rectangular channel under rolling condition[J]. Atomic Energy Science and Technology, 2011, 45(11):1329-1333.
[35] 张金红. 摇摆状态下气水两相流流型及阻力特性研究[D]. 哈尔滨:哈尔滨工程大学, 2009. ZHANG Jinhong. Study on flow pattern and resistance characteristics of air-water two-phase flow in rolling motion[D]. Harbin:Harbin Engineering Univerisity, 2009.
[36] 贾辉, 曹夏昕, 阎昌琪, 等. 摇摆状态下气液两相流流型转变的实验研究[J]. 核科学与工程, 2006, 26(3):209-214, 198. JIA Hui, CAO Xiaxin, YAN Changqi, et al. Experimental study on two-phase flow pattern transition in rolling tubes[J]. Chinese Journal of Nuclear Science and Engineering, 2006, 26(3):209-214, 198.
[37] ISHIDA T, YAO T, TESHIMA N, Experiments of two-phase flow dynamics of marine reactor behavior under heaving motion[J]. Journal of Nuclear Science and Technology, 1997, 34(8):771-782.
[38] 谭思超, 庞凤阁. 摇摆运动引起的波动与自然循环密度波型脉动的叠加[J]. 核动力工程, 2005, 26(2):140-143. TAN Sichao, PANG Fengge. Overlapped flow of flow oscillation caused by rolling motion and density wave oscillation of natural circulation[J]. Nuclear Power Engineering, 2005, 26(2):140-143.
[39] 谭思超, 高文杰, 高璞珍, 等. 摇摆运动对自然循环流动不稳定性的影响[J]. 核动力工程, 2007, 28(5):42-45. TAN Sichao, GAO Wenjie, GAO Puzhen, et al. Effect of rolling motion on flow instability of natural circulation[J]. Nuclear Power Engineering, 2007, 28(5):42-45.
[40] 谭思超, 高璞珍, 苏光辉. 摇摆运动条件下自然循环复合型脉动的实验研究[J]. 原子能科学技术, 2008, 42(11):1007-1011. TAN Sichao, GAO Puzhen, SU Guanghui. Experimental research on natural circulation complex oscillations under rolling motion conditions[J]. Atomic Energy Science and Technology, 2008, 42(11):1007-1011.
[41] TAN Sichao, SU G H, GAO Puzhen. Experimental study on two-phase flow instability of natural circulation under rolling motion condition[J]. Annals of Nuclear Energy, 2009, 36(1):103-113.
[42] GUO Yun, QIU S Z, SU G H, et al. The influence of ocean conditions on two-phase flow instability in a parallel multi-channel system[J]. Annals of Nuclear Energy, 2008, 35(9):1598-1605.
[43] TANG Yu, CHEN Bingde, XIONG Wanyu, et al. Comparison of flow instabilities under static condition and marine motion conditions based on experiments[J]. Annals of Nuclear Energy, 2014, 70:11-20.
[44] YU Zhiting, TAN Sichao, YUAN Hongsheng, et al. Experimental investigation on flow instability of forced circulation in a mini-rectangular channel under rolling motion[J]. International Journal of Heat and Mass Transfer, 2016, 92:732-743.
[45] GUO Yun, CHENG Gong, ZENG Heyi. The application of fast fourier transform (FFT) method in the twin-channel system instability under ocean conditions[J]. Annals of Nuclear Energy, 2010, 37(8):1048-1055.
[46] ZHANG Wenchao, TAN Sichao, GAO Puzhen, et al. Study on chaotic characteristics of natural circulation flow instability under rolling motion[J]. Atomic Energy Science and Technology, 2012, 46(6):705-709.
[47] ZHANG Wenchao, TAN Sichao, GAO Puzhen, et al. Non-linear time series analysis on flow instability of natural circulation under rolling motion condition[J]. Annals of Nuclear Energy, 2014, 65:1-9.
[48] ISSHIKI N. Effects of heaving and listing upon thermo-hydraulic performance and critical heat flux of water-cooled marine reactors[J]. Nuclear Engineering and Design, 1966, 4(2):138-162.
[49] OTSUJI T, KUROSAWA A. Critical heat flux of forced convection boiling in an oscillating acceleration field-I. General trends[J]. Nuclear Engineering and Design, 1982, 71(1):15-26.
[50] OTSUJI T, KUROSAWA A. Critical heat flux of forced convection boiling in an oscillating acceleration field-Ⅱ. Contribution of flow oscillation[J]. Nuclear Engineering and Design, 1983, 76(1):13-21.
[51] OTSUJI T, KUROSAWA A. Critical heat flux of forced convection boiling in an oscillating acceleration field-Ⅲ. Reduction mechanism of CHF in subcooled flow boiling[J]. Nuclear Engineering and Design, 1984, 79(1):19-30.
[52] 庞凤阁, 高璞珍, 王兆祥, 等. 摇摆对常压水临界热流密度(CHF)影响实验讲究[J]. 核科学与工程, 1997, 17(4):367-371. PANG Fengge, GAO Puzhen, WANG Zhaoxiang, et al. Experimental investigation of effect of rolling upon critical heat flux (CHF) for water at atmospheric pressure[J]. Chinese Journal of Nuclear Science and Engineering, 1997, 17(4):367-371.
[53] 高璞珍, 王兆祥, 庞凤阁, 等. 摇摆情况下水的自然循环临界热流密度实验研究[J]. 哈尔滨工程大学学报, 1997, 18(6):38-42. GAO Puzhen, WANG Zhaoxiang, PANG Fengge, et al. Experiments on critical heat flux of water under natural circulation with rolling movement[J]. Journal of Harbin Engineering University, 1997, 18(6):38-42.
[54] HWANG J S, LEE Y G, PARK G C. Characteristics of critical heat flux under rolling condition for flow boiling in vertical tube[J]. Nuclear Engineering and Design, 2012, 252:153-162.
[55] LIU W X, TIAN W X, WU Y W, et al. An improved mechanistic critical heat flux model and its application to motion conditions[J]. Progress in Nuclear Energy, 2012, 61:88-101.
[56] LIU Di, TIAN Wenxi, XI Mengmeng, et al. Study on safety boundary of flow instability and CHF for parallel channels in motion[J]. Nuclear Engineering and Design, 2018, 335:219-230.
[57] ISHIDA I, TOMIAI I. Development of analysis code for thermal hydro-dynamics of marine reactor under multi-dimensional ship motions, retran-02/grav[R]. Tokyo, Japan:Atomic Energy Research Inst., 1992.
[58] KIM J H, PARK G C. Development of Retran-03/mov code for thermal-hydraulic analysis of nuclear reactor under mowing conditions[J]. Journal of the Korean Nuclear Society, 1996, 28(6):542-550.
[59] YAN B H, YU L. The development and validation of a thermal hydraulic code in rolling motion[J]. Annals of Nuclear Energy, 2011, 38(8):1728-1736.
[60] 谭长禄, 张虹, 赵华, 等. 基于RELAP5的海洋条件下反应堆热工水力系统分析程序开发[J]. 核动力工程, 2009, 30(6):53-56, 62. TAN Changlu, ZHANG Hong, ZHAO Hua, et al. Development of ocean-condition code based on RELAP5[J]. Nuclear Power Engineering, 2009, 30(6):53-56, 62.
[61] 程坤, 谭思超, 陈莹莹, 等. 海洋条件反应堆热工水力系统分析程序开发及验证[J]. 哈尔滨工程大学学报, 2017, 38(8):1223-1230. CHENG Kun, TAN Sichao, CHEN Yingying, et al. Development and validation of nuclear reactor thermal-hydraulic system analysis code under ocean conditions[J]. Journal of Harbin Engineering University, 2017, 38(8):1223-1230.
[62] ZHANG Y, BUONGIORNO J, GOLAY M, et al. Effect of platform motion on the safety performance of an offshore floating nuclear power plant[C]//17th International Topical Meeting on Nuclear Reactor Thermal Hydraulics. Xi’an, China, 2017.
[63] 杨帆, 张丹, 谭长禄, 等. 海洋条件对浮动式核电厂事故后自然循环特性影响研究[J]. 核动力工程, 2015, 36(3):148-151. YNAG Fan, ZHANG Dan, TAN Changlu, et al. Effect of marine condition on feature of natural circulation after accident in floating nuclear power plant[J]. Nuclear Power Engineering, 2015, 36(3):148-151.
[64] 程坤, 谭思超, 何川, 等. 摇摆条件下海上浮动堆全厂断电事故分析[J]. 原子能科学技术, 2017, 51(11):1989-1996. CHENG Kun, TAN Sichao, HE Chuan, et al. Analysis of SBO accident in floating nuclear reactor under rolling condition[J]. Atomic Energy Science and Technology, 2017, 51(11):1989-1996.

备注/Memo

备注/Memo:
收稿日期:2018-11-08。
基金项目:国家重点研发计划(2017YFE0106200).
作者简介:程坤,男,博士研究生;谭思超,男,教授,博士生导师.
通讯作者:谭思超,E-mail:tansichao@hrbeu.edu.cn
更新日期/Last Update: 2019-04-03