[1]孙大军,马超,梅继丹,等.基于非负最小二乘的矢量阵反卷积波束形成方法[J].哈尔滨工程大学学报,2019,40(07):1217-1223.[doi:10.11990/jheu.201811059]
 SUN Dajun,MA Chao,MEI Jidan,et al.Deconvolved conventional beamforming of a vector-sensor array based on non-negative least squares[J].hebgcdxxb,2019,40(07):1217-1223.[doi:10.11990/jheu.201811059]
点击复制

基于非负最小二乘的矢量阵反卷积波束形成方法(/HTML)
分享到:

《哈尔滨工程大学学报》[ISSN:1006-6977/CN:61-1281/TN]

卷:
40
期数:
2019年07期
页码:
1217-1223
栏目:
出版日期:
2019-07-05

文章信息/Info

Title:
Deconvolved conventional beamforming of a vector-sensor array based on non-negative least squares
作者:
孙大军123 马超123 梅继丹123 石文佩123
1. 哈尔滨工程大学 水声技术重点实验室, 黑龙江 哈尔滨 150001;
2. 海洋信息获取与安全工信部重点实验室(哈尔滨工程大学) 工业和信息化部, 黑龙江 哈尔滨 150001;
3. 哈尔滨工程大学, 水声工程学院, 黑龙江 哈尔滨 150001
Author(s):
SUN Dajun123 MA Chao123 MEI Jidan123 SHI Wenpei123
1. Acoustic Science and Technology Laboratory, Harbin Engineering University, Harbin 150001, China;
2. Key Laboratory of Marine Information Acquisition and Security(Harbin Engineering University), Ministry of Industry and Information Technology, Harbin 150001, China;
3. College of Underwater Acoustic Engineering, Harbin Engineering University, Harbin 150001, China
关键词:
矢量阵反卷积波束形成移变点扩散函数非负最小二乘高分辨稳健性
分类号:
TB566
DOI:
10.11990/jheu.201811059
文献标志码:
A
摘要:
针对现有反卷积波束形成方法无法直接适用于矢量阵等具有移变点扩散函数阵列的问题,本文给出了一种利用非负最小二乘法进行矢量阵这种移变模型的反卷积求解方法。推导了矢量阵的广义卷积模型,并在常规矢量阵波束输出、矢量阵点扩散函数字典、目标函数之间建立差函数方程组,通过最小化差函数的原则来实现对目标函数的求解,从而实现矢量阵反卷积波束形成处理。本文方法同样适用于其他移变模型阵列反卷积求解。对本文方法与传统波束形成、最小方差无畸变响应和多重信号分类方法在主瓣宽度、旁瓣级和稳健性等方面的性能进行了对比分析。结果表明本文方法在存在阵元位置误差情况下具有更窄的主瓣宽度和更低的主旁瓣比。

参考文献/References:

[1] DE CASTRO F C F, DE CASTRO M C F, ARANTES D S. Concurrent blind deconvolution for channel equalization[C]//Proceedings of IEEE International Conference on Communications. Helsinki, Finland, 2001:366-371.
[2] NSIRI B, CHONAVEL T, BOUCHER J M, et al. Blind submarine seismic deconvolution for long source wavelets[J]. IEEE journal of oceanic engineering, 2007, 32(3):729-743.
[3] LYLLOFF O, FERNÃNDEZ-GRANDE E, AGERKVIST F, et al. Improving the efficiency of deconvolution algorithms for sound source localization[J]. The journal of the acoustical society of America, 2015, 138(1):172-180.
[4] ZHONG Di, YANG Dong, ZHU Min. Improvement of sound source localization in a finite duct using beamforming methods[J]. Applied acoustics, 2016, 103:37-46.
[5] VONESCH C, UNSER M. A fast thresholded landweber algorithm for wavelet-regularized multidimensional deconvolution[J]. IEEE transactions on image processing, 2008, 17(4):539-549.
[6] SEKKO E, THOMAS G, BOUKROUCHE A. A deconvolution technique using optimal Wiener filtering and regularization[J]. Signal processing, 1999, 72(1):23-32.
[7] DOUGHERTY R. Extensions of DAMAS and benefits and limitations of deconvolution in beamforming[C]//Proceedings of the 11th AIAA/CEAS Aeroacoustics Conference. Monterey, California, 2005.
[8] EHRENFRIED K, KOOP L. Comparison of iterative deconvolution algorithms for the mapping of acoustic sources[J]. AIAA journal, 2012, 45(7):1584-1595.
[9] BLAHUT R E. Theory of remote image formation[M]. Cambridge:Cambridge University Press, 2004.
[10] YANG T C. Deconvolved conventional beamforming for a horizontal line array[J]. IEEE journal of oceanic engineering, 2018, 43(1):160-172.
[11] YANG T C. Performance analysis of superdirectivity of circular arrays and implications for sonar systems[J]. IEEE journal of oceanic engineering, 2019, 44(1):156-166.
[12] 梁国龙, 马巍, 范展, 等. 矢量声纳高速运动目标稳健高分辨方位估计[J]. 物理学报, 2013, 62(14):144302.LIANG Guolong, MA Wei, FAN Zhan, et al. A high resolution robust localization approach of high speed target based on vector sonar[J]. Acta physica sinica, 2013, 62(14):144302.
[13] 时洁, 杨德森, 时胜国. 基于最差性能优化的运动声源稳健聚焦定位识别方法研究[J]. 物理学报, 2011, 60(6):064301.SHI Jie, YANG Desen, SHI Shengguo. Robust localization and identification method of moving sound sources based on worst-case performance optimization[J]. Acta physica sinica, 2011, 60(6):064301.
[14] 褚志刚, 杨洋. 基于非负最小二乘反卷积波束形成的发动机噪声源识别[J]. 振动与冲击, 2013, 32(23):75-81.CHU Zhigang, YANG Yang. Noise source identification for an engine based on FFT-non-negative least square (NNLS) deconvolution beamforming[J]. Journal of vibration and shock, 2013, 32(23):75-81.
[15] 张宾, 孙贵青, 李启虎. 阵形畸变对拖曳双线阵左右舷分辨性能的影响[J]. 声学学报, 2008, 33(4):294-299.ZHANG Bin, SUN Guiqing, LI Qihu. Effects of shape distortion upon left/right discrimination of towed twin-line array[J]. Acta acustica, 2008, 33(4):294-299.

相似文献/References:

[1]时洁,杨德森,时胜国.二阶锥规划在噪声源稳健定位识别中的应用[J].哈尔滨工程大学学报,2011,(12):1549.[doi:doi:10.3969/j.issn.1006-7043.2011.12.005]
 SHI Jie,YANG Desen,SHI Shengguo.A robust localization and identification method of noise sources using second-order cone programming[J].hebgcdxxb,2011,(07):1549.[doi:doi:10.3969/j.issn.1006-7043.2011.12.005]

备注/Memo

备注/Memo:
收稿日期:2018-11-19。
基金项目:国家自然学科基金项目(61531012,61801140,51609052);黑龙江声自然科学基金项目(JC2016013).
作者简介:孙大军,男,教授,博士生导师,"长江学者"特聘教授;梅继丹,女,副研究员.
通讯作者:梅继丹,E-mail:meijidan@hrbeu.edu.cn
更新日期/Last Update: 2019-07-04