[1]张聪,贾德君,李范春,等.三体船横舱壁拓扑优化设计及力学分析[J].哈尔滨工程大学学报,2020,41(6):805-811.[doi:10.11990/jheu.201812031]
 ZHANG Cong,JIA Dejun,LI Fanchun,et al.Topology optimization design and mechanical property analysis of the transverse bulkhead of a trimaran[J].hebgcdxxb,2020,41(6):805-811.[doi:10.11990/jheu.201812031]
点击复制

三体船横舱壁拓扑优化设计及力学分析(/HTML)
分享到:

《哈尔滨工程大学学报》[ISSN:1006-6977/CN:61-1281/TN]

卷:
41
期数:
2020年6期
页码:
805-811
栏目:
出版日期:
2020-06-05

文章信息/Info

Title:
Topology optimization design and mechanical property analysis of the transverse bulkhead of a trimaran
作者:
张聪 贾德君 李范春 钦伦洋
大连海事大学 船舶与海洋工程学院, 辽宁 大连 116026
Author(s):
ZHANG Cong JIA Dejun LI Fanchun QIN Lunyang
Ship and Ocean Engineering College, Dalian Maritime University, Dalian 116026, China
关键词:
三体船船舶舱壁结构强度拓扑优化轻量化有限元方法实船加筋布置
分类号:
U663.4
DOI:
10.11990/jheu.201812031
文献标志码:
A
摘要:
为减少三体船结构质量以提高三体船总体性能,同时保证结构质量减少后三体船舱壁结构具有足够的结构强度,本文基于《Rules for The Classification of Trimarans》设计了7个三体船结构强度校核工况。应用变密度拓扑优化方法,计算了优化前、后三体船舱壁结构在不同工况下的应力分布。计算及优化结果表明:特定工况不同体积约束条件下,优化后舱壁结构应力最大值与体积减少比例之间不存在正相关关联;通过优化能在保证结构安全的前提下,减少舱壁优化区域内50%的结构重量,实现非水密舱壁结构的轻量化设计;通过与实船舱壁设计对比,优化后舱壁连接材料的分布与实船舱壁的加强筋分布相似,特定工况下按照优化结果进行加强筋布置的舱壁结构强度更好,拓扑优化技术可在特定工况下为舱壁结构的加筋布置提供指导。

参考文献/References:

[1] 杨德喜. 高速三体船结构设计与强度评估[D]. 哈尔滨:哈尔滨工程大学, 2010.YANG Dexi. Structure design and strength assessment of high speed trimarans[D]. Harbin:Harbin Engineering University, 2010.
[2] 邓乐. 高速三体船结构力学特性研究[D]. 武汉:武汉理工大学, 2008.DENG Le. Study on mechanics characteristics of high-speed trimaran[D]. Wuhan:Wuhan University of Technology, 2008.
[3] 杨赵华. 高速三体船结构轻型化设计研究[D]. 武汉:武汉理工大学, 2008.YANG Zhaohua. Design and research on light structure of high-speed trimaran ship[D]. Wuhan:Wuhan University of Technology, 2008.
[4] 张丽, 王德禹. 基于Isight的3100TEU集装箱船中剖面优化设计[J]. 船海工程, 2007, 36(5):16-18.ZHANG Li, WANG Deyu. Optimization design of mid-section of 3100 TEU container ship based on Isight[J]. Ship & ocean engineering, 2007, 36(5):16-18.
[5] 张会新, 杨德庆. 典型船舶板架拓扑与形状优化设计[J]. 中国舰船研究, 2015, 10(6):27-33, 59.ZHANG Huixin, YANG Deqing. Typical shape and topology optimization design of the ship grillage structure[J]. Chinese journal of ship research, 2015, 10(6):27-33, 59.
[6] EHLERS S. A particle swarm algorithm-based optimization for high-strength steel structures[J]. Journal of ship production and design, 2012, 28(1):1-9.
[7] 甄春博, 王天霖, 于鹏垚. 船体结构疲劳可靠性分析的直接计算方法[J]. 哈尔滨工程大学学报, 2018, 39(4):664-667.ZHEN Chunbo, WANG Tianlin, YU Pengyao. Direct calculation approach for fatigue reliability analysis of ship structures[J]. Journal of Harbin Engineering University, 2018, 39(4):664-667.
[8] 任慧龙, 陈亮亮, 李辉, 等. 三体船波浪设计载荷的三维时域水弹性理论研究[J]. 哈尔滨工程大学学报, 2016, 37(1):19-23.REN Huilong, CHEN Liangliang, LI Hui, et al. Study of the design wave loads of a trimaran based on 3D time-domain hydroelastic theory[J]. Journal of Harbin Engineering University, 2016, 37(1):19-23.
[9] BENDSOE M P, KIKUCHI N. Generating optimal topologies in structural design using a homogenization method[J]. Computer methods in applied mechanics and engineering, 1998, 71(2):197-224.
[10] BENDS?E M P. Optimal shape design as a material distribution problem[J]. Structural optimization, 1989, 1(4):193-202.
[11] XIE Y M, STEVEN G P. A simple evolutionary procedure for structural optimization[J]. Computers & structures, 1993, 49(5):885-896.
[12] ALLAIRE G, JOUVE F. TOADER A M. A level-set method for shape optimization[J]. Comptes rendus mathematique, 2002, 334(12):1125-1130.
[13] CHENG G D, GUO X. ε-relaxed approach in structural topology optimization[J]. Structural optimization, 1997, 13(4):258-266.
[14] SU Ruiyi, GUI Liangjin, FAN Zijie. Topology and sizing optimization of truss structures using adaptive genetic algorithm with node matrix encoding[C]//Proceedings of the 5th International Conference on Natural Computation. Tianjin, China, 2009.
[15] 邱伟强, 杨德庆, 高处, 等. 基于拓扑优化的油船货舱结构设计研究[J]. 船舶, 2016, 27(5):1-11.QIU Weiqiang, YANG Deqing, GAO Chu, et al. Structural design in cargo tank region for oil tankers based on topology optimization[J]. Ship & boat, 2016, 27(5):1-11.
[16] MUNK D J, VERSTRAETE D, VIO G A. Effect of fluid-thermal-structural interactions on the topology optimization of a hypersonic transport aircraft wing[J]. Journal of fluids and structures, 2017, 75:45-76.
[17] OKTAY E, AKAY H U, MERTTOPCUOGLU O. Parallelized structural topology optimization and CFD coupling for design of aircraft wing structures[J]. Computers & fluids, 2011, 49(1):141-145.
[18] Lloyd’s Register (LR). Incorporating Notice No. 1, The rules for the classification of trimaran[S]. 2006.
[19] OLSEN G R, VANDERPLAATS G N. Method for nonlinear optimization with discrete design variables[J]. AIAA journal, 1989, 27(11):1584-1589.
[20] ZHOU M, ROZVANY G I N. The COC algorithm, Part II:topological, geometrical and generalized shape optimization[J]. Computer methods in applied mechanics and engineering, 1991, 89(1/2/3):309-336.
[21] BENDSOE M P, SIGMUND O. Topology optimization:theory, methods and applications[M]. New York:Springer, 2003.

相似文献/References:

[1]黄德波,张雨新,邓锐,等.单体与三体高速船舶粘性流场数值模拟[J].哈尔滨工程大学学报,2010,(06):0.
 HUANG De bo,ZHANG Yu xin,DENG Rui,et al.Numerical simulation of viscous flow around high speed monohull and trimaran ships[J].hebgcdxxb,2010,(6):0.
[2]胡开业,卢友敏,丁勇.NURBS方法的深V型三体船稳性[J].哈尔滨工程大学学报,2011,(10):1273.[doi:doi:10.3969/j.issn.1006-7043.2011.10.002]
 HU Kaiye,LU Youmin,DING Yong.Research on deep-vee trimaran stability based on the non-uniform rational B-spline method[J].hebgcdxxb,2011,(6):1273.[doi:doi:10.3969/j.issn.1006-7043.2011.10.002]
[3]詹金林,卢晓平,李光磊.三体船操纵性水动力的势流理论计算[J].哈尔滨工程大学学报,2012,(05):642.[doi:10.3969/j.issn.1006-7043. 201106049]
 ZHAN Jinlin,LU Xiaoping,LI Guanglei.Calculation of trimaran’s maneuverability hydrodynamics by the potential flow theory[J].hebgcdxxb,2012,(6):642.[doi:10.3969/j.issn.1006-7043. 201106049]
[4]任慧龙,陈亮亮,李辉,等.三体船波浪设计载荷的三维时域水弹性理论研究[J].哈尔滨工程大学学报,2016,37(01):19.[doi:10.11990/jheu.201405024]
 REN Huilong,CHEN Liangliang,LI Hui,et al.Study of the design wave loads of a trimaran based on 3D time-domain hydroelastic theory[J].hebgcdxxb,2016,37(6):19.[doi:10.11990/jheu.201405024]
[5]周广利,艾子涛,邓锐,等.多体船形状因子1+k确定方法[J].哈尔滨工程大学学报,2016,37(03):338.[doi:10.11990/jheu.201501014]
 ZHOU Guangli,AI Zitao,DENG Rui,et al.Method for determining the form factor 1+k of multihull vessel[J].hebgcdxxb,2016,37(6):338.[doi:10.11990/jheu.201501014]
[6]易文彬,王永生,刘承江,等.喷水推进三体船推力减额计算及分析[J].哈尔滨工程大学学报,2019,40(03):572.[doi:10.11990/jheu.201710063]
 YI Wenbin,WANG Yongsheng,LIU Chengjiang,et al.Computation and analysis of thrust deduction fraction of waterjet propelled trimaran[J].hebgcdxxb,2019,40(6):572.[doi:10.11990/jheu.201710063]
[7]邹健,王凡超,李辉,等.三体船运动与波浪载荷的伪共振问题研究[J].哈尔滨工程大学学报,2019,40(06):1051.[doi:10.11990/jheu.201804087]
 ZOU Jian,WANG Fanchao,LI Hui,et al.Pseudoresonance in trimaran motion and wave load estimation[J].hebgcdxxb,2019,40(6):1051.[doi:10.11990/jheu.201804087]
[8]张雷,张佳宁,尚宇宸,等.三体船压力跃变的喷水推进推力数值方法[J].哈尔滨工程大学学报,2019,40(09):1582.[doi:10.11990/jheu.201802030]
 ZHANG Lei,ZHANG Jianing,SHANG Yuchen,et al.Numerical method for waterjet thrust of trimaran considering pressure jump[J].hebgcdxxb,2019,40(6):1582.[doi:10.11990/jheu.201802030]

备注/Memo

备注/Memo:
收稿日期:2018-12-07。
基金项目:国家自然科学基金项目(51379025).
作者简介:张聪,男,硕士研究生;李范春,男,教授.
通讯作者:李范春,E-mail:lee_fc@126.com.
更新日期/Last Update: 2020-07-22