[1]乔东生,孙玉博,马刚,等.深水锚泊主动式截断试验执行机构运动前馈控制[J].哈尔滨工程大学学报,2020,41(2):199-205.[doi:10.11990/jheu.201812046]
 QIAO Dongsheng,SUN Yubo,MA Gang,et al.Feedforward control of actuator motion in the active truncation model test of the deep-water mooring system[J].hebgcdxxb,2020,41(2):199-205.[doi:10.11990/jheu.201812046]
点击复制

深水锚泊主动式截断试验执行机构运动前馈控制(/HTML)
分享到:

《哈尔滨工程大学学报》[ISSN:1006-6977/CN:61-1281/TN]

卷:
41
期数:
2020年2期
页码:
199-205
栏目:
出版日期:
2020-02-05

文章信息/Info

Title:
Feedforward control of actuator motion in the active truncation model test of the deep-water mooring system
作者:
乔东生1 孙玉博1 马刚2 汤威1 闫俊1 欧进萍1
1. 大连理工大学 海岸和近海工程国家重点实验室, 辽宁 大连 116024;
2. 哈尔滨工程大学 船舶工程学院, 黑龙江 哈尔滨 150001
Author(s):
QIAO Dongsheng1 SUN Yubo1 MA Gang2 TANG Wei1 YAN Jun1 OU Jinping1
1. State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology, Dalian 116024, China;
2. College of Shipbuilding Engineering, Harbin Engineering University 150001, China
关键词:
主动截断锚泊系统执行机构Stewart平台运动学反解前馈控制干扰观测器永磁同步电机
分类号:
P751
DOI:
10.11990/jheu.201812046
文献标志码:
A
摘要:
为了研究深水锚泊系统主动式截断模型试验,针对驱动锚泊线截断点处的执行机构运动跟踪控制问题,选择Stewart平台作为截断点的运动执行机构,基于Matlab/Simulink建立执行机构及其驱动电机的运动模型。利用白噪声测试对驱动电机进行系统辨识,根据辨识结果设计前馈控制算法及干扰观测器。集成仿真验证前馈控制对执行机构运动跟踪的控制效果。研究结果表明:前馈控制能够提高执行机构运动的运动跟踪速度且减小50%的运动跟踪误差,为搭建锚泊系统主动式截断模型试验平台提供理论基础。

参考文献/References:

[1] STANSBERG C T, ORMBERG H, ORITSLAND O. Challenges in deep water experiments:hybrid approach[J]. Journal of offshore mechanics and arctic engineering, 2002, 124(2):90-96.
[2] SAUDER T M, S?RENSEN A J, LARSEN K. Real-time Hybrid model testing of a top tensioned riser:a numerical case study on interface time-delays and truncation[C]//Proceedings of the ASME 2017 36th International Conference on Ocean. Trondheim, 2017:1-12.
[3] MA Gang, WANG Hongwei, SUN Liping, et al. Dynamic truncation method for mooring lines with tension estimation combined in the time and frequency domains[J]. Ships and offshore structures, 2018, 13(3):310-319.
[4] 高文军. 深海系泊缆等效水深截断点处运动和受力的仿真及控制[D]. 杭州:中国计量学院, 2012.GAO Wenjun. Simulation and control for motion and force on equivalent depth truncated points of deep sea mooring line[D]. Hangzhou:China Jiliang University, 2012.
[5] ABDELLATIF H, HEIMANN B. Advanced model-based control of a 6-DOF hexapod robot:a case study[J]. IEEE/ASME transactions on mechatronics, 2010, 15(2):269-279.
[6] 刘晓昕. Stewart平台的MATLAB集成工具箱设计[D]:哈尔滨:哈尔滨工业大学, 2007.LIU Xiaoxin. The design of integrated MATLAB toolbox for stewart platform[D]. Harbin:Harbin Institute of Technology, 2007.
[7] 张尚盈, 赵慧, 韩俊伟. 六自由度运动平台实时控制的正/反解算法[J]. 机床与液压, 2003(3):133-135, 123.ZHANG Shangying, ZHAO Hui, HAN Junwei. Direct and reverse algorithms for real-time control of 6-DOF platform[J]. Machine tool & hydraulics, 2003(3):133-135, 123.
[8] DUAN Xuechao, MI Jianwei, ZHAO Ze. Vibration isolation and trajectory following control of a cable suspended stewart platform[J]. Machines, 2016, 4(4):20.
[9] LEE S, SONG J, CHOI W C, et al. Position control of a stewart platform using inverse dynamics control with approximate dynamics[J]. Mechatronics, 2003, 13(6):605-619.
[10] 施昕昕, 常思勤. 一种新型6自由度运动平台的控制研究[J]. 机械工程学报, 2014, 50(3):56-63.SHI Xinxin, CHANG Siqin. Research on control of a novel 6-DOF motion platform[J]. Journal of mechanical engineering, 2014, 50(3):56-63.
[11] KIM D H, KANG J Y, LEE K I. Robust tracking control design for a 6 DOF parallel manipulator[J]. Journal of robotic systems, 2000, 17(10):527-547.
[12] 张士涛, 张葆, 李贤涛, 等. 基于零相差轨迹控制方法提升快速反射镜性能[J]. 吉林大学学报(工学版), 2018, 48(3):853-858.ZHANG Shitao, ZHANG Bao, LI Xiantao, et al. Enhancing performance of FSM based on zero phase error tracking control[J]. Journal of Jilin University (engineering and technology edition), 2018, 48(3):853-858.
[13] LEE K H, BAEK S G, KOO J C. Real-time high bandwidth feedforward position control of electro-hydraulic actuator using non-minimum phase inverse model[C]//Proceedings of the ASME 2017 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Cleveland, 2017:1-6.
[14] 王福超, 田大鹏, 王昱棠. 基于DOB和ZPETC的PWM驱动快速反射镜控制方法研究[J]. 机电工程, 2015, 32(7):904-908.WANG Fuchao, TIAN Dapeng, WANG Yutang. Control of fast-steering mirror driven by PWM based on DOB and ZPETC[J]. Journal of mechanical & electrical engineering, 2015, 32(7):904-908.
[15] 李志军, 刘成颖, 孟凡伟, 等. 基于ZPETC和DOB的直线电机控制器设计及实验研究[J]. 中国电机工程学报, 2012, 32(4):134-140.LI Zhijun, LIU Chengying, MENG Fanwei, et al. ZPETC and DOB based controller design for PMLSM and experimental investigation[J]. Proceedings of the CSEE, 2012, 32(4):134-140.
[16] 王莉娜, 杨宗军. Simulink中PMSM模型的改进及在参数辨识中的应用[J]. 电机与控制学报, 2012, 16(7):77-82.WANG Li’na, YANG Zongjun. PMSM model’s reform in SIMULINK and application in parameters’ identification[J]. Electric machines and control, 2012, 16(7):77-82.
[17] CHEN Lei, YANG Jiaqiang, LOU Jiayu. An adaptive speed control method for permanent magnet synchronous motors[C]//Proceedings of the 2016 19th International Conference on Electrical Machines and Systems. Chiba, 2016:1-5.

相似文献/References:

[1]张斌,宋保维.驻留型UUV锚泊系统运动建模与分析[J].哈尔滨工程大学学报,2016,37(04):498.[doi:10.11990/jheu.201501019]
 ZHANG Bin,SONG Baowei.Dynamic modeling and simulation of mooring system for an unmanned underwater vehicle[J].hebgcdxxb,2016,37(2):498.[doi:10.11990/jheu.201501019]
[2]乔东生,漆徐良,闫俊,等.张紧式锚泊系统松弛-张紧过程冲击张力分析[J].哈尔滨工程大学学报,2020,41(2):206.[doi:10.11990/jheu.201904061]
 QIAO Dongsheng,QI Xuliang,YAN Jun,et al.Analysis of snap loading of a taut mooring system in the slack-taut process[J].hebgcdxxb,2020,41(2):206.[doi:10.11990/jheu.201904061]

备注/Memo

备注/Memo:
收稿日期:2018-12-12。
基金项目:国家重点研发计划(2016YFE0200100);国家自然科学基金项目(51979030,51979050,51490672,51761135011);中央高校基本科研业务费项目.
作者简介:乔东生,男,副教授,博士生导师;马刚,男,副研究员;欧进萍,男,教授,博士生导师,中国工程院院士.
通讯作者:马刚,E-mail:magang@hrbeu.edu.cn.
更新日期/Last Update: 2020-03-24